
Lift-Off with CodeX
Learn Python fundamentals through fun projects with the CodeX.

Mission 1 - Welcome to Lift-Off Peripherals!
Welcome Back!

Are you ready to expand your coding knowledge? I'll be your guide as YOU
learn to interact with external components.

You will complete some Outer Space-themed projects in your mission to Lift-
Off with code.

Why add peripherals?

A CodeX is great, but sometimes you just need more!
Sometimes you need some hardware peripherals.
Like an LED, a sensor, a pump, or a servo...
Peripherals allow you to interact with the world in new and exciting ways.

And now... It is time for YOU to hook up your favorite peripherals and get coding.

As you complete this project-based course, you'll be learning skills that will allow you to imagine and create ANYTHING!

Objective 1 - Mission "Peripherals"

Mission Briefing:

A crew of astronauts is preparing to embark on a long and arduous
journey into the vast reaches of outer space.

The crew must launch from Earth, survive a months-long journey through
space, and then establish a colony on Mars.

They will need many electronic applications to aid them on their journey,
and they are looking for your help to build them!

Each project in the Lift-Off Peripherals course will simulate real-
world electronic applications that could be used:

On-board a space shuttle
As part of mission control
On the Mars colony

Your mission is to utilize the CodeX with different peripherals to build applications needed by the crew.

The CodeX has four expansion ports for connecting peripherals.

Each PORT is located just above a NeoPixel.
Notice that the number for each pixel also points to the PORT.
PORT0 is just above pixel 0 and is to the left of the CodeX.
PORT3 is just above pixel 3 and is to the right of the CodeX.

Concept: Python with CodeX Extension

The Peripherals course is intended to be a follow-on to the Python with CodeX curriculum.

You will need to recall and apply some basic Python knowledge learned in that course.
Don't worry if you are a little rusty. You will get plenty of refresher along the way!
Check the emoji_objects Hints for the recommended Python knowledge base.
If you already have those Python fundamentals then this course will be a snap!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 1 of 214

Hint:

Recommended Python knowledge base:
Variables

Functions and parameters

Branching with if, elif and else

while loops

Timing using the sleep function

Using comments

Comparison operators ==, !=, <, and >

Boolean values True and False

Goal:

Click on PORT0 on the CodeX in the 3D scene!

Hint: Rotate the CodeX to the side view.

Tools Found: CPU and Peripherals

Solution:

N/A

Objective 2 - Explore Your Kit!

Explore your Kit!

The LiftOff Peripherals Kit contains many different peripherals. There are inputs and outputs, buttons, sensors, servos, and even a
pump!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 2 of 214

Check the emoji_objects Hints for details about each peripheral.

Physical Interaction: How do I find this information again?

Click this link → LiftOff Kit

This will add a topic to the Tool Box in the lower right corner of your screen. The tool box allows you to return to important
topics. You can access general information on the peripheral kit and learn even more about each of the components in your
kit.

Hints:

Button
A standard momentary push button. Buttons are used in a wide variety of applications to take user input.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 3 of 214

Switch
This switch locks into place when pressed. Switches are generally used to apply power or change a setting.

Potentiometer
Often referred to as a knob. The potentiometer can be physically turned. It returns a value based on the position it is set to.

Microswitch

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 4 of 214

The microswitch is used in a variety of applications. Operationally, it is nothing more than a button. It can be used as a crash
sensor to detect robot touch.

Motion Sensor
A PIR (Passive Infrared) Sensor measures IR light radiating from objects. Typically used in applications such as motion lights
and alarms.

Temperature Sensor
Can read a raw value of the temperature. Requires some calibration to provide a specific temperature value in Celsius or
Farenheit.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 5 of 214

Sound Sensor
This sensor is sensitive to sound intensity. It can be used to detect noises.

Light Sensor
The photocell is used to measure the amount of ambient light. It has many uses such as smoke detection, solar monitoring, and
light dimming.

3V Relay
Can be used to switch larger power and voltages to devices. Could be used for a DC Motor or an AC Lamp.

Contact Ratings: 2A 120VAC / 2A 24VDC

Red LED

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 6 of 214

A red LED (Light Emitting Diode). Outputs a red light.

A white LED is also included in the kit.

8 RGB LED Ring
8 RGB (Red Green Blue) LED Ring. Also called a NeoPixel ring. This device has 8 individual RGB LED pixels. Pixels can be
illuminated any color and assigned individually.

Object Sensor
Sometimes referred to as a Hunt Sensor. It contains an LED that emits Infrared (IR) light, and a Phototransistor that detects IR
light reflected from nearby objects. It hs many uses such as object detection and line following.

180 Servo
More commonly called a positional servo. This servo can rotate clockwise or counterclockwise 180 degrees. It can be used to
move project components to a specific location.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 7 of 214

360 Servo
More commonly called a continuous rotational servo. This servo can rotate 360 degrees. It operates continuously in the
clockwise (forward) or counterclockwise (backward) direction.

Water Pump
This is a small water pump. It is designed for vertical, submersible operations and can be used to transfer water from one
location to another.

Soil Moisture Sensor
Detects the amount of moisture present in the soil surrounding it. Most often used to determine when a plant needs water.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 8 of 214

Goal:

Click on LiftOff Kit to add the topic to your toolbox.

Tools Found: CPU and Peripherals, LiftOff Kit

Solution:

N/A

Objective 3 - More Peripherals

But wait ... there's more!

The Lift-Off Peripherals Kit contains a few more peripherals.

One of them is the divider.

The divider is a circuit that cuts in half the voltage from analog sensors.
It enables the analog sensors to get their full range.
The divider board is first connected to the CodeX, and the analog sensor connects
to the divider board.

The Lift-Off Peripherals Kit also contains some external peripherals that don't have pre-
made 3-wire connectors.

The CodeX has a pair of expansion ports, located on the front near the bottom of the board.
The external peripherals are connected on the breadboard, which is mounted on the CodeX using the expansion ports.
Use jumper wires to connect the periperals with connection points.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 9 of 214

Check the emoji_objects Hints for details about the additional peripherals.

Hints:

Divider Board
The analog sensors can put out 5V, but the CodeX ADC can only show around 2.8V. The divider board cuts the voltage in half
so the sensors can read their full range.

Analog sensors in the Kit include:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 10 of 214

Potentiometer

Temperature Sensor

Light Sensor

Sound Sensor

Soil Moisture Sensor

Mini Breadboard
The mini breadboard is one of the smallest breadboards available. The tiny holes on the breadboard let you easily insert
electronic components to build a circuit.

The components can be external peripherals like LEDs, sensors, buttons, and speakers.

The connections are not permanent, so it is easy to remove components and reuse the breadboard for a different project.

The CodeX will supply power to the mounted breadboard, which can then power the added components.

Jumper Wires
Jumper wires are used to make connections on a breadboard. Their ends are easy to push into the breadboard holes. The
wires come in varying colors. It doesn't matter which colors you use, but color coding the project helps you stay organized and
keep track of what you are connecting.

HC-SR04 Ultrasonic Sensor
The ultrasonic sensor uses sonar to determine the distance to an object. The sensor returns the time it took to give and receive
the signal.

LEDs and Resistors
The LEDs that will connect to the breadboard will need resistors when they are built into a circuit. LEDs don't respond well when
voltage fluctuates, and this can damage the LED.

The positive lead on the LED is the long side.

The negative lead on the LED is the short side.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 11 of 214

The resistor doesn't have a designated positive or negative lead and can be connected in any order.

Goal:

Rotate the CodeX in the 3D scene.

Click on one of the Expansion Ports on the CodeX.

Tools Found: CPU and Peripherals

Solution:

N/A

Objective 4 - Connecting a Peripheral

Make some connections!

The CodeX makes connecting peripherals easy. Here is what you need to know:

The peripheral connectors are labeled with S, V and G. Connect a cable to the peripheral this
way:

Yellow is S (Signal) and is connected to the S
Red is VCC (Power) and is connected to the V
Black is G (Ground) and is connected to the G

The two ends of the cable are different.

The larger end has a latch and is inserted in the
peripheral.
It should lock into place.
The colored wires will match the labels.
To remove it, press the small latch as you pull on the
plastic connector.

The connecting ports on the CodeX are also labeled G and S.

Turn the CodeX over and look at the Port Connectors.
Connect the smaller end of the cable into a port.
The Black wire is inserted into the G and the Yellow wire into the S.

Careful! Never pull on the wires - always grasp the plastic connectors when you remove a cable.

Goal:

Rotate the CodeX in the 3D scene.

Click on PORT3 where you will find the G and S on the physical CodeX.

Solution:

N/A

Quiz 1 - Check Your Understanding: Peripherals

Question 1: Which CodeX Port is the last port on the right?

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 12 of 214

done PORT3

close PORT0

close PORT1

close PORT2

Question 2: What peripheral locks into place when pressed?

done Switch

close Button

close Microswitch

close Potentiometer

Question 3: The black wire is connected to:

done Ground

close Signal

close Power

close Volts

Objective 5 - Connect the Red LED

Use the CodeX expansion ports.

The Peripherals course has a new project symbol that lets you know it is time to connect a
peripheral.

The Connect Peripheral project symbol will contain a peripheral and a connection location
on the CodeX.
The connection location will be PORT0, PORT1, PORT2 or PORT3.
Each PORT is located above the NeoPixel with the same number.

Connect Peripheral

Connect the red LED to PORT0 on the CodeX now!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 13 of 214

Next you will write code to turn ON the red LED.

The microcontroller has a pre-loaded library that allows the CodeX to access expansion connectors and peripheral ports.

You will use the exp library to set up peripherals on the CodeX and give them power.
The code needs to include the following information:

The peripheral port being used.
Type of peripheral: analog or digital.
Purpose of peripheral: input or output.

The code to set up the red LED looks like this:

led = exp.digital_out(exp.PORT0)

The code sets up a variable led as digital output.

Use the value property of the variable led to turn on and off the LED.

led.value = True # Turn on the LED
led.value = False # Turn off the LED

Create a New File!

Use the File → New File menu to create a new file called PeriphIntro.

Check the 'Trek!

Follow the CodeTrek to set up the red LED and turn it ON.

Run It!

Does the red LED turn on and off?

CodeTrek:

 1 from codex import *
 2 from time import sleep

 3
 4 # Set up the red LED
 5 led = exp.digital_out(exp.PORT0)

 6
 7 # Main program
 8 led.value = True
 9 sleep(3)
10 led.value = False
11 sleep(3)

Import the CodeX library and sleep from the time library.

This is always the first step for every Lift-Off mission.

Set up the red LED on PORT0.

Tell the CodeX a digital output peripheral is connected on PORT0.

Use the value property to:

Turn on the LED (then delay 3 seconds)
Turn off the LED (then delay 3 seconds)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 14 of 214

Hint:

CircuitPython
The code to set up the peripherals comes from CircuitPython. CircuitPython is a programming language designed to simplify
experimenting and learning to code on low-cost microcontroller boards.

CircuitPython adds hardware support to the already amazing features of Python.

If you already have Python knowledge, you can easily apply that to using CircuitPython.

If you have no previous experience, it's really simple to get started.

Goals:

Create a new file named PeriphIntro.

Set up the red LED by assigning the variable led as the output of exp.digital_out(exp.PORT0).

Assign led.value as True.

Tools Found: Variables

Solution:

 1 from codex import *
 2 from time import sleep #@1
 3
 4 # Set up the red LED
 5 led = exp.digital_out(exp.PORT0)#@2
 6
 7 # Main program
 8 led.value = True
 9 sleep(3)
10 led.value = False
11 sleep(3)

Objective 6 - Meaningful Code

You are able to turn on and off the LED. But...

Check the 'Trek!

Run It!

Does the red LED turn on?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for the peripherals
 5 LED_ON = True
 6 LED_OFF = False

 7
 8 # Set up the red LED

Define constants for the LED.

They name the purpose of True and False and make the code more readable.
You will do this for every mission that uses a red or white LED.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 15 of 214

 9 led = exp.digital_out(exp.PORT0)
10
11 # Function that turns on/off the red LED
12 def set_red_led(val):
13 led.value = val

14
15 # Main program
16 while True:
17 set_red_led(LED_ON)
18 sleep(3)
19 set_red_led(LED_OFF)
20 sleep(3)

Hint:

Using Constants with Peripherals
Why use constants when you could just use True and False?

"Future You" will appreciate the readability!

LED_ON has more meaning than True.

Circuits do not all operate the same.

There are circuits where False could turn the LED on!

Defining values up front helps avoid errors.

Goals:

Define constants LED_ON and LED_OFF.

Define the function set_red_led(val).

Assign val to led.value.

Call set_red_led() with the argument LED_ON.

Tools Found: Constants, Functions, Indentation, Keyword and Positional Arguments

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for the peripherals
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 # Set up the red LED
 9 led = exp.digital_out(exp.PORT0)
10
11 # Function that turns on/off the red LED
12 def set_red_led(val):
13 led.value = val
14

Define a function that turns on/off the red LED.

It takes one parameter val.
Right now, val will be either True or False and is assigned to the LED property value.

Use an infinite while True: loop to turn on and off the red LED.

Call the set_red_led() function.
Use the constants as arguments.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 16 of 214

15 # Main program
16 while True:
17 set_red_led(LED_ON)
18 sleep(3)
19 set_red_led(LED_OFF)
20 sleep(3)

Mission 1 Complete

You've completed the first LiftOff Peripherals Kit project!

...and you're at the start of a fantastic adventure. From this small first project, your journey will take you to greater heights - more
projects are ahead to challenge and amaze you! A universe of possibilities awaits.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 17 of 214

Mission 2 - Lift-Off!
This project explores buttons and switches, with a quick refresher on many of the coding concepts you
have learned previously!

Mission Briefing:

Your first task in Mission: Lift Off is getting the crew's rocket ship off the ground.

The ship is going to need a power switch, all personnel will be tuned to a
countdown sequence, and mission control needs a launch button to fire the
engines and blast the crew's rocket out of the atmosphere.

Project Goals:

Utilize buttons, switches, and LEDs together
Understand the differences between a button and a switch
Refresh your Python knowledge
Get the crew's mission to Mars underway!!

Ready to get started?

Objective 1 - Add a Switch

The first step is getting power on the ship!

Connect Peripheral

Create a New File!

Use the File → New File menu to create a new file called LiftOff.

Check the 'Trek!

CodeTrek:

 1 from codex import *
 2 from time import sleep

Import two libraries.

Remember: This is always the first step.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 18 of 214

 3
 4 # Constants for LED light
 5 # TODO: Define constants for LED_ON and LED_OFF

 6
 7 # Set up the LED
 8 red_led = exp.digital_out(exp.PORT0)

 9
10 def set_red_led(val):
11 red_led.value = val

12
13 set_red_led(LED_ON)
14 sleep(1)
15 set_red_led(LED_OFF)

Hints:

Look familiar?
This code is very similar to the program for Mission 1. You can open PeriphIntro and copy and paste.

Use a delay (sleep) in between turning the light on and turning it off.

This is for testing.

Goals:

Create a new file named LiftOff.

Define the constants LED_ON and LED_OFF.

Define the function set_red_led(val).

Assign val to red_led.value.

Call set_red_led() twice to turn on and off the red light

Tools Found: Constants, Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for LED light
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 # Set up the LED
 9 red_led = exp.digital_out(exp.PORT0)

The LED_ON is True and LED_OFF is False.

Set up the red LED on PORT0.

Tell the CodeX a digital output peripheral is connected on PORT0.

Define a function to turn the LED on or off.

Make sure the LED is properly connected by using this test code.

Remember to import sleep from the time module.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 19 of 214

10
11 def set_red_led(val):
12 red_led.value = val
13
14 set_red_led(LED_ON)
15 sleep(1)
16 set_red_led(LED_OFF)
17
18

Objective 2 - Turn the Power ON!!

You will need a switch to turn on power for the shuttle's launch operation.

A switch is a peripheral that can be set to a binary ON or OFF position.

The switch in your LiftOff Kit is similar to a light switch in your home.

Connect Peripheral

Connect the switch to PORT1 on your CodeX.

Physical Interaction: Try it!

Press the switch a few times to see how it moves!

Now that your switch is connected you can use it to turn the power ON for the launch operation.

The switch is a digital input peripheral, so use the exp.digital_in() function to set it up.

After it is set up, switch.value will return the position of your switch as either True or False.

switch = exp.digital_in(exp.PORT1)

You want to check the switch's position continuously. How can you make the program keep checking?

If you reach back into your Python knowledge, you might remember that loops allow a program to run sections of code multiple
times.

With a loop, you can update the position of your switch in real time.

Check the 'Trek!

Follow the CodeTrek to set up the switch and use a while True: loop to read the switch's position.

Use switch.value as the argument in the set_red_led() function call.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 20 of 214

Test the switch for both positions.

Physical Interaction: Try it

Run the code. While it is running:

Extend the switch to the OUT position. Observe the switch value and the LED.
Push the switch to the IN position. Observe the switch value and the LED.

Did you notice that the red LED turned ON when the switch was OUT and turned OFF when the switch was IN?

If you are thinking, "Hmmm... the power should come ON when the switch is IN" ... You will get to that soon, but it is important to
realize that you can choose which way it works in your own projects

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for LED light
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 # Set up the LED
 9 red_led = exp.digital_out(exp.PORT0)
10
11 # Set up the switch
12 switch = exp.digital_in(exp.PORT1)

13
14 def set_red_led(val):
15 red_led.value = val
16
17 # Main program
18 while True:
19 display.print(switch.value)
20 set_red_led(switch.value)

21

Hint:

Up and Down
Adding a display.print() statement to see the value returned by the switch's position on the CodeX display is a valuable tool for
testing.

You can observe the value of the peripheral.

AND you can observe the result of the value.

Goals:

Set up the switch by assigning the variable switch as the output of exp.digital_in(exp.PORT1).

Inside a while True: loop:

Set up the switch on PORT1.

Tell the CodeX a digital input peripheral is connected on PORT1.

Use switch.value as the argument to the set_red_led() function call.

Remember: switch.value is either True or False, just like the constants LED_ON and LED_OFF.
For testing, add display.print(switch.value) to see what value is returned.
The value will be printed on the CodeX display.
Use a while True: loop to read the switch continuously.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 21 of 214

Use switch.value as the argument in the function call to set_red_led().

Tools Found: CPU and Peripherals, Binary Numbers, LiftOff Kit, Functions, Loops, Variables, Keyword and Positional Arguments

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 LED_ON = True
 5 LED_OFF = False
 6
 7 # Set up the LED
 8 led = exp.digital_out(exp.PORT0)
 9
10 # Set up the Switch
11 switch = exp.digital_in(exp.PORT1)
12
13 def set_red_led(val):
14 led.value = val
15
16 # Main program
17 while True:
18 display.print(switch.value)
19 set_red_led(switch.value)
20
21

Objective 3 - Clean Energy

Now, how do you make the LED turn ON when the switch is pressed IN?

Start by mapping it out. Say you want:

ON if the switch is pressed IN
OFF if the switch is extended OUT

Since switch.value returns False when pressed IN, declare that False means
POWER_ON.

Define the constant near the top of your file:

POWER_ON = False

"Now, how can I turn the LED on if the switch value is POWER_ON?"

Get your Python thinking cap on again. Think... Think... That's it!!

You can use branching to turn on and off your LED!

An if statement allows your code to choose its path based on a condition.

If switch.value is POWER_ON, or False, turn the LED ON.
Otherwise, turn the LED OFF.

Check the 'Trek!

Follow the CodeTrek to add an if statement to the loop to turn on/off the LED.

Physical Interaction: Try it

Run your code. Press the switch IN to turn ON the red LED, and OUT to turn OFF the red LED.

CodeTrek:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 22 of 214

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch

 9
10 # Set up the LED
11 red_led = exp.digital_out(exp.PORT0)
12
13 # Set up the switch
14 switch = exp.digital_in(exp.PORT1)
15
16 def set_red_led(val):
17 red_led.value = val
18
19 while True:
20 if switch.value == POWER_ON:

21 set_red_led(LED_ON)
22 else:
23 set_red_led(LED_OFF)

Hints:

Compare, not assign
Watch out for the double equals == comparison operator!

It checks if two things are the same (or equal).

The single equals = assigns a value and is NOT used for comparing.

ON and OFF
The switch's value will be used for branching. Then use the constants LED_ON and LED_OFF as the arguments to the function call
set_red_led(val) instead of switch.value.

Goals:

Define a constant POWER_ON with the value False.

Use an if statement with the condition switch.value == POWER_ON.

When True, call set_red_led(LED_ON).

Tools Found: Constants, Branching, bool

Solution:

 1 from codex import *
 2 from time import sleep

Define a constant to indicate ON when the switch is pushed IN.

Constants are defined near the top of the file.

The == operator checks if the current switch.value is the same as POWER_ON and returns a Boolean value.

If True use LED_ON as the argument for turning on the light.
Otherwise use LED_OFF as the argument for turning off the light.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 23 of 214

 3
 4 # Constants
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch
 9
10 # Set up the LED
11 red_led = exp.digital_out(exp.PORT0)
12
13 # Set up the switch
14 switch = exp.digital_in(exp.PORT1)
15
16 def set_red_led(val):
17 red_led.value = val
18
19 while True:
20 if switch.value == POWER_ON:
21 set_red_led(LED_ON)
22 else:
23 set_red_led(LED_OFF)
24

Objective 4 - Button vs Switch

The switch gives your launch power, but you are going to need a button to start the
countdown to lift-off!

"What is the difference between a button and a switch?"

As strange as it seems, the CodeX does not see a difference!
Both the switch and the button are digital input peripherals.
A button and a switch are both read with exp.digital_in().

The difference between a button and a switch is entirely mechanical:

A switch locks in the ON position.
A button only stays in the ON position while it is pressed.

You will keep the switch for the power and add the button for the countdown.

Connect Peripheral

Connect the button to PORT2 on your CodeX.

Add code to control the red light with your button!

Just like the switch, the button returns True when it is up (not pressed) and False when it is down (pressed).

You will want to declare that False means PRESSED.
You can define a constant PRESSED and assign it the value False, like you did for the switch.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 24 of 214

Then for testing:

Change the branch statement in your loop to compare button.value to PRESSED.

Check the 'Trek!

Follow the CodeTrek to set up the button and use it to control the red LED.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch
 9 PRESSED = False # Button

10
11 # Set up the LED
12 red_led = exp.digital_out(exp.PORT0)
13
14 # Set up the switch
15 switch = exp.digital_in(exp.PORT1)
16
17 # Set up the button
18 button = exp.digital_in(exp.PORT2)

19
20 def set_red_led(val):
21 red_led.value = val
22
23 # Main program
24 while True:
25 if button.value == PRESSED:

26 set_red_led(LED_ON)
27 else:
28 set_red_led(LED_OFF)

Hint:

The Need for Constants
When the button is pressed, it's value is False. You can define a constant for False, like you did for the switch, and use it in a
condition.

Then you can turn on the light when the button is pressed, or False, and turn off the light when the button is not pressed, or
True.

Goals:

Set up the button by assigning the variable button as the output of exp.digital_in(exp.PORT2).

Define another constant to indicate ON when the button is pushed.

Set up the button on PORT2.

Tell the CodeX a digital input peripheral is connected on PORT2.

Use the button to control the red LED.

Replace the switch's value with the button's value in the condition.
Replace POWER_ON with PRESSED.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 25 of 214

Define the constant PRESSED.

Use an if statement with the condition button.value == PRESSED.

When True, call set_red_led(LED_ON).

Tools Found: Constants, Branching, Loops, Variables, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 LED_ON = True
 5 LED_OFF = False
 6
 7 POWER_ON = False # Switch
 8 PRESSED = False # Button
 9
10 # Set up the LED
11 red_led = exp.digital_out(exp.PORT0)
12
13 # Set up the switch
14 switch = exp.digital_in(exp.PORT1)
15
16 # Set up the button
17 button = exp.digital_in(exp.PORT2)
18
19 def set_red_led(val):
20 red_led.value = val
21
22 while True:
23 if button.value == PRESSED:
24 set_red_led(LED_ON)
25 else:
26 set_red_led(LED_OFF)

Quiz 1 - Check Your Understanding: Button vs Switch

Question 1: What type of peripheral is the red LED?

done Digital Output

close Digital Input

close Analog Input

close Analog Output

Question 2: What type of peripheral is the switch?

done Digital Input

close Digital Output

close Analog Input

close Analog Output

Question 3: What value is assigned to POWER_ON?

done False

close True

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 26 of 214

close 0

close 1

Question 4: Which peripheral momentarily stays on when you press it but does not lock into place?

close Red LED

done Button

close Switch

Objective 5 - Countdown!

A flashing white LED will make a great Countdown Indicator.

Connect Peripheral

Connect the white LED to PORT3 on your CodeX.

Here is the algorithm to create a countdown when the button is pressed:

Add code to set up the white LED, similar to the red LED.
Define a new function def set_white_led() that turns on/off the white LED.

The function should set the white LED to the parameter val, similar to the set_red_led() function.
Define a new def countdown() function so the launch operation can prepare for lift-off!

The function will flash the white light, display numbers and use delays to make a launch operation.

This Objective requires two more functions, which makes your code meaningful. That's because a function is a form of procedural
abstraction.

Concept: Abstraction

Your code will get more complicated and harder to read as you add more peripherals to a project. It is crucial to stay
organized!

A powerful tool for organizing code is abstraction. When you define a function like set_white_led() or countdown() you are
creating a new abstraction!

Now the rest of the code doesn't have to know about the details of what the function does or how it does it.
In the future you could completely change how the LED turns on/off or how the countdown looks, and all the other code
would keep working without change!

Check the 'Trek!

Follow the CodeTrek to define two functions:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 27 of 214

set_white_led() for turning on/off the white light
countdown() for flashing the white light to prepare for launch.

Then call countdown() in the if statement when the button is pressed.

Physical Interaction: Try it!

Run the code. Press the button to start the countdown sequence, and then end the program.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch
 9 PRESSED = False # Button
10
11 # Set up the LED
12 red_led = exp.digital_out(exp.PORT0)
13 white_led = exp.digital_out(exp.PORT3)

14
15 # Set up the switch
16 switch = exp.digital_in(exp.PORT1)
17
18 # Set up the button
19 button = exp.digital_in(exp.PORT2)
20
21 def set_red_led(val):
22 red_led.value = val
23
24 def set_white_led(val):
25 # TODO: set the white LED to `val`

26
27 # Lift off countdown when button is pressed
28 def countdown():
29 display.print("3", scale=9)
30 set_white_led(LED_ON)
31 sleep(0.5)
32 set_white_led(LED_OFF)
33 sleep(0.5)
34 display.print("2", scale=9)
35 set_white_led(LED_ON)
36 sleep(0.5)
37 set_white_led(LED_OFF)
38 sleep(0.5)
39 display.print("1", scale=9)
40 set_white_led(LED_ON)
41 sleep(0.5)

Set up the white LED on PORT3.

Define the function set_white_led() to turn on/off the white LED.

Set the value of the white LED to the parameter val

Define the countdown() function to countdown the launch operation when the button is pressed.

Use display.print() to show the countdown number.
Flash the white light on and off for each number.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 28 of 214

42
43 # Main program
44 while True:
45 if button.value == PRESSED:
46 countdown()
47 break

48 else:
49 set_red_led(LED_OFF)
50
51 # Program ends - turn off LED
52 set_white_led(LED_OFF)

Hints:

Red and White
The code for setting up the white LED and turning it on/off with a function is very similar to the code for the red LED.

You can even copy and paste the code and then make changes from red to white.

Delay
If you remember, a delay is just a pause in your program.

It is as simple as calling the sleep() function with a half-second argument.

Goals:

Define the function set_white_led(val).

Define the function countdown().

Flash the white LED three times.

Use an if statement with the condition button.value == PRESSED.

When True, call countdown().

Tools Found: Functions, Parameters, Arguments, and Returns, Timing, CPU and Peripherals, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for LED light
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch
 9 PRESSED = False # Button
10
11 # Set up the LED
12 red_led = exp.digital_out(exp.PORT0)
13 white_led = exp.digital_out(exp.PORT3)

Use a half-second delay between each cycle of number and flashing white light.

Modify the if statement to call countdown() when the button is pressed.

Then break to end the program.

Turn off the white LED after the while True: loop ends.

This last command is needed because the white LED will stay on, even after the program ends.
Watch your indenting! The last statement is NOT inside the while True: loop.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 29 of 214

14
15 # Set up the switch
16 switch = exp.digital_in(exp.PORT1)
17
18 # Set up the button
19 button = exp.digital_in(exp.PORT2)
20
21 def set_red_led(val):
22 red_led.value = val
23
24 def set_white_led(val):
25 white_led.value = val
26
27 # Lift off countdown when button is pressed
28 def countdown():
29 display.print("3", scale=9)
30 set_white_led(LED_ON)
31 sleep(0.5)
32 set_white_led(LED_OFF)
33 sleep(0.5)
34 display.print("2", scale=9)
35 set_white_led(LED_ON)
36 sleep(0.5)
37 set_white_led(LED_OFF)
38 sleep(0.5)
39 display.print("1", scale=9)
40 set_white_led(LED_ON)
41 sleep(0.5)
42
43 # Main program
44 while True:
45 if button.value == PRESSED:
46 countdown()
47 break
48 else:
49 set_red_led(LED_OFF)
50
51 # Program ends - turn off LED
52 set_white_led(LED_OFF)

Objective 6 - Switches and Buttons... Oh My!

What if you only want your countdown sequence to happen if the power is ON?

The button controls the countdown, but the switch controls the power.

Concept

There is always more than one way to accomplish something in code!

This problem is no different. There are MANY ways to solve this.

Check the 'Trek!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch
 9 PRESSED = False # Button
10
11 # Set up the LED
12 red_led = exp.digital_out(exp.PORT0)
13 white_led = exp.digital_out(exp.PORT3)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 30 of 214

14
15 # Set up the switch
16 switch = exp.digital_in(exp.PORT1)
17
18 # Set up the button
19 button = exp.digital_in(exp.PORT2)
20
21 def set_red_led(val):
22 red_led.value = val
23
24 def set_white_led(val):
25 white_led.value = val
26
27 # Lift off countdown when button is pressed
28 def countdown():
29 display.print("3", scale=9)
30 set_white_led(LED_ON)
31 sleep(0.5)
32 set_white_led(LED_OFF)
33 sleep(0.5)
34 display.print("2", scale=9)
35 set_white_led(LED_ON)
36 sleep(0.5)
37 set_white_led(LED_OFF)
38 sleep(0.5)
39 display.print("1", scale=9)
40 set_white_led(LED_ON)
41 sleep(0.5)
42
43 # Main program
44 while True:
45 if button.value == PRESSED and switch.value == POWER_ON:
46 countdown()
47 break

48 elif switch.value == POWER_ON:
49 set_red_led(LED_ON)

50 else:
51 set_red_led(LED_OFF)

52
53 # Program ends - turn off LED
54 set_white_led(LED_OFF)
55 set_red_led(LED_OFF)

Hint:

Order!
When you have more than two conditions, the order of the conditions makes a difference.

The first condition checks if the button is pressed and the switch is on.

If so, call countdown().

The second condition checks if the switch is on.

If so, turn on the red LED.
You don't need to check if the button isn't pressed.

If neither condition is True then turn off the red LED.

The button isn't pressed and the switch is off.

After the while True: loop ends, turn off the red LED.

You already turn off the white LED. Include the red LED as well.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 31 of 214

The CodeX starts checking with the first condition and stops checking the first time a condition is True. Any remaining conditions
will NOT be checked.

Make sure you put the most restrictive condition first, and go in order to get the results you want.

Goals:

Modify the if statement to use three conditions.

if, elif, and else!

Use an if statement with the condition button.value == PRESSED and switch.value == POWER_ON.

When True, call countdown().

Tools Found: bool, Branching, Logical Operators, undefined

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch
 9 PRESSED = False # Button
10
11 # Set up the LED
12 red_led = exp.digital_out(exp.PORT0)
13 white_led = exp.digital_out(exp.PORT3)
14
15 # Set up the switch
16 switch = exp.digital_in(exp.PORT1)
17
18 # Set up the button
19 button = exp.digital_in(exp.PORT2)
20
21 def set_red_led(val):
22 red_led.value = val
23
24 def set_white_led(val):
25 white_led.value = val
26
27 # Lift off countdown when button is pressed
28 def countdown():
29 display.print("3", scale=9)
30 set_white_led(LED_ON)
31 sleep(0.5)
32 set_white_led(LED_OFF)
33 sleep(0.5)
34 display.print("2", scale=9)
35 set_white_led(LED_ON)
36 sleep(0.5)
37 set_white_led(LED_OFF)
38 sleep(0.5)
39 display.print("1", scale=9)
40 set_white_led(LED_ON)
41 sleep(0.5)
42
43 # Main program
44 while True:
45 if button.value == PRESSED and switch.value == POWER_ON:
46 countdown()
47 break
48 elif switch.value == POWER_ON:
49 set_red_led(LED_ON)
50 else:
51 set_red_led(LED_OFF)
52

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 32 of 214

53 # Program ends - turn off LED
54 set_white_led(LED_OFF)
55 set_red_led(LED_OFF)

Quiz 2 - Check Your Understanding: Coding Concepts

Question 1: What statement allows you to add conditional branches to an if statement?

done elif

close break

close and

close else

Question 2: What statement is executed when no other condition is True?

done else

close elif

close break

close and

Question 3: What keyword is a logical operator?

done and

close elif

close else

close break

Question 4: What statement exits a loop immediately when called?

done break

close elif

close and

close else

Objective 7 - Lift-Off

Are you ready for launch?

Simulate a lift-off on the CodeX using display.fill() and colors that simulate a lift-off.

You can use built-in colors like this:

display.fill(RED)
sleep(0.25)
display.fill(ORANGE)
sleep(0.25)
display.fill(YELLOW)
sleep(0.25)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 33 of 214

display.fill(WHITE)
sleep(0.25)

Define a function for lift_off(). You will call this function after countdown() and before ending the program.

Check the 'Trek!

Follow the CodeTrek to define the function lift_off() and call it after countdown().

And now you are ready to send this ship into outer space!!

Physical Interaction: Houston, we have lift-off!

Press the switch and then the button to launch the rocket!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch
 9 PRESSED = False # Button
10
11 # Set up the LED
12 red_led = exp.digital_out(exp.PORT0)
13 white_led = exp.digital_out(exp.PORT3)
14
15 # Set up the switch
16 switch = exp.digital_in(exp.PORT1)
17
18 # Set up the button
19 button = exp.digital_in(exp.PORT2)
20
21 def set_red_led(val):
22 red_led.value = val
23
24 def set_white_led(val):
25 white_led.value = val
26
27 # Lift off countdown when button is pressed
28 def countdown():
29 set_white_led(LED_ON)
30 sleep(0.5)
31 set_white_led(LED_OFF)
32 sleep(0.5)
33 set_white_led(LED_ON)
34 sleep(0.5)
35 set_white_led(LED_OFF)
36 sleep(0.5)
37 set_white_led(LED_ON)
38
39 # Final blast-off after countdown
40 def lift_off():
41 display.clear()
42 display.fill(RED)
43 sleep(0.25)
44 display.fill(ORANGE)
45 sleep(0.25)
46 display.fill(YELLOW)
47 sleep(0.25)
48 display.fill(WHITE)
49 sleep(0.25)

Your color sequence can look like this.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 34 of 214

50 display.clear()
51 display.print("LIFT-OFF", scale=4)
52 sleep(1)

53
54 while True:
55 if button.value == PRESSED and switch.value == POWER_ON:
56 countdown()
57 # TODO: Call the lift_off() function

58 break
59 elif switch_val == POWER_ON:
60 set_red_led(LED_ON)
61 else:
62 set_red_led(LED_OFF)
63
64 # Program ends - turn off LED
65 set_white_led(LED_OFF)
66 set_red_led(LED_OFF)

Hints:

RGB Colors
If you used RGB to define colors in other missions, you can use them here to display shades of colors, like this.

Here is an example of shades of red:

display.fill((203, 11, 28))
sleep(0.25)
display.fill((169, 10, 24))
sleep(0.25)
display.fill((131, 9, 19))
sleep(0.25)
display.fill((92, 7, 14))
sleep(0.25)

Show and Tell
For an added touch, you can include a message with your launch.

For example, you can use display.print("Lift-Off!") somewhere in your launch sequence.

You can also add extra features to your lift-off, like pixels flashing or an audio file, to make your lift-off unique to your program.

Goals:

Define the function lift_off().

Call the following functions.

display.fill(RED)
display.fill(ORANGE)
display.fill(YELLOW)
display.fill(WHITE)

Call lift_off().

Use the colors you want and as many colors as you want.
Also, choose the delay time between colors.

Optional!

You can display a message before, during, or after the color sequence.

Call the lift_off() function before ending the program.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 35 of 214

Tools Found: Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 POWER_ON = False # Switch
 9 PRESSED = False # Button
10
11 # Set up the LED
12 red_led = exp.digital_out(exp.PORT0)
13 white_led = exp.digital_out(exp.PORT3)
14
15 # Set up the switch
16 switch = exp.digital_in(exp.PORT1)
17
18 # Set up the button
19 button = exp.digital_in(exp.PORT2)
20
21 # Turn on/off the LEDs
22 def set_red_led(val):
23 red_led.value = val
24
25 def set_white_led(val):
26 white_led.value = val
27
28 # Countdown sequence with flashing white LED when button is pressed
29 def countdown():
30 display.print("3", scale=9)
31 set_white_led(LED_ON)
32 sleep(0.5)
33 set_white_led(LED_OFF)
34 sleep(0.5)
35 display.print("2", scale=9)
36 set_white_led(LED_ON)
37 sleep(0.5)
38 set_white_led(LED_OFF)
39 sleep(0.5)
40 display.print("1", scale=9)
41 set_white_led(LED_ON)
42 sleep(0.5)
43
44 # Final lift-off sequence (can be different for each student)
45 def lift_off():
46 display.clear()
47 display.fill(RED)
48 sleep(0.25)
49 display.fill(ORANGE)
50 sleep(0.25)
51 display.fill(YELLOW)
52 sleep(0.25)
53 display.fill(WHITE)
54 sleep(0.25)
55 display.clear()
56 display.print("LIFT-OFF", scale=4)
57 sleep(1)
58
59 # === MAIN PROGRAM ===
60 while True:
61 if button.value == PRESSED and switch.value == POWER_ON:
62 countdown()
63 lift_off()
64 break
65 elif switch.value == POWER_ON:
66 set_red_led(LED_ON)
67 else:
68 set_red_led(LED_OFF)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 36 of 214

69
70 # Program ends - turn off LED
71 set_white_led(LED_OFF)
72 set_red_led(LED_OFF)

Mission 2 Complete

You've completed project Lift-Off!

...and you helped launch the crew into outer space. What will they need now that they have left Earth's amosphere?

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 37 of 214

Mission 3 - Conserve Energy!
This project introduces an analog and digital sensor and shows how to dim an LED with software!

Mission Briefing:

The crew's rocket ship is hurtling through space. Energy conservation will be
critical to surviving the long journey to Mars.

Project: Conserve Energy will guide you through reducing power consumption in
the ship's lighting system.

You will need to detect motion in the crew compartment to turn on the lights and
reduce power by dimming them down when no motion is detected.

Project Goals:

Take an analog input from a potentiometer (knob)
Learn software techniques to dim an LED
Use a digital sensor (the PIR Motion Sensor)
Conserve critical energy for mission success!!

Objective 1 - Lighting System

The first step is constructing a lighting system for the shuttle.

Add the ship's main lights!

The white LED will be the lighting system for the shuttle's main room

Connect Peripheral

Connect the white LED to PORT0 on your CodeX.

Disconnect all other peripherals.

Create a New File!

Use the File → New File menu to create a new file called ConserveEnergy.

Check the 'Trek!

Follow the CodeTrek to set up the white LED and turn it on.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 38 of 214

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep

 3
 4 # Constants for peripherals
 5 # TODO: define constants for LED_ON and LED_OFF

 6
 7 # Set up the peripherals
 8 led = exp.digital_out(exp.PORT0)

 9
10 def set_led(val):
11 led.value = val
12
13 # Main program
14 while True:
15 set_led(LED_ON)

16

Hints:

Look familiar?
This code is very similar to code used at the beginning of Mission 2. You can open the file and copy and paste the part you
need.

LED setup
In previous missions, you designated variables for red_led and white_led. For this mission, you will only use one LED, so the
variable name can be simplified.

Goals:

Create a new file named ConserveEnergy.

Define the function set_led(val).

Call set_led().

Use LED_ON as the argument to turn the LED ON.

Tools Found: Functions

Remember to import the libraries you need.

Define your constants for the LED.

LED_ON is True
LED_OFF is False

Set up the white LED on PORT0

Define the set_led() function.

Call the function in the while True loop.
Turn the LED ON by using LED_ON as the argument.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 39 of 214

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 # Set up the peripherals
 9 led = exp.digital_out(exp.PORT0)
10
11 def set_led(val):
12 led.value = val
13
14 # Main program
15 while True:
16 set_led(LED_ON)
17

Objective 2 - Power Cycle the Lights?

Caution

Concept: Fast Timers

You've been using the sleep() function from the import time library module.

There are even more timer features available in Python's time module!

For example:

sleep_ms() is a delay just like sleep() but with milliseconds (ms) instead of seconds.

1000 milliseconds (ms) = 1 seconds

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep_ms

 3
 4 # Constants for peripherals
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 # Set up the peripherals
 9 led = exp.digital_out(exp.PORT0)
10
11 def set_led(val):
12 led.value = val
13
14 # Main program
15 while True:
16 set_led(LED_ON)
17 sleep_ms(0.25)
18 set_led(LED_OFF)
19 sleep_ms(0.75)

Change the from time import sleep statement to use milliseconds.

Use function calls to sleep_ms() to dim the light.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 40 of 214

Hints:

Fast Timers
Some functions, like sleep_ms() are not available in regular Python, but they are available in some microcontroller versions, like
CircuitPython and MicroPython.

Here are some fun facts:
In human vision there is a "Critical Flicker-Fusion Frequency"

...anything flashing faster than that will not be perceived as flickering!

Your loop cycles every 1000us → = =1000

That's well above the Critical Flicker-Fusion Frequency!

AND you just reduced energy consumption by 75%!!

The LED appears dimmer than it was because there is less total energy put into the LED.

Try your skills
Try different arguments for sleep_ms() to see how the light changes.

Experiment to find the "Critical Flicker-Fusion Frequency"!

Goals:

Import sleep_ms.

In a while True loop:

1. Turn the LED ON.
2. Sleep for 0.25ms.
3. Turn the LED OFF.
4. Sleep for 0.75ms.

Tools Found: Time Module, Timing, import, Loops

Solution:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 # Set up the peripherals
 9 led = exp.digital_out(exp.PORT0)
10
11 def set_led(val):
12 led.value = val
13
14 # Main program
15 while True:
16 set_led(LED_ON)
17 sleep_ms(0.25)
18 set_led(LED_OFF)
19 sleep_ms(0.75)

Quiz 1 - Check for Understanding: Time

Use 0.25 as the argument for LED_ON
Use 0.75 as the argument for LED_OFF

f req ​0.001sec
1 Hz

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 41 of 214

Question 1: Which function will delay code using milliseconds?

done sleep_ms()

close sleep()

close sleep_us()

close delay_ms()

Question 2: How many milliseconds are in one second?

done 1,000

close 100

close 10,000

close 1,000,000

Objective 3 - PWM (Pulse-width Modulation)

It could get complicated to add mulitple sleep_ms() calls in your loop.

Is there a way to make the ON and OFF happen automatically?

YES!! You can use Pulse-width Modulation (PWM).

PWM allows you to turn the power ON and OFF behind the scenes at a fast rate by just setting a few values.

Concept: PWM

PWM is one of the many capabilities of the CodeX expansion ports.

ON/OFF pulses are sent at a constant rate, set by the duty cycle.
The PWM frequency is based on the given period in ms.
The PWM duty-cycle (% power) uses an integer between 0 and .

Check the 'Trek!

Follow the CodeTrek to control the LED with PWM.

Run It!

Try changing the LED_ON duty cycle to see how the LED dims.

duty_cycle=0 → 0% ON time each period
duty_cycle=2**15-1 → 50% ON time each period
duty_cycle=2**16-1 → 100% ON time each period

CodeTrek:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals

2 − 116

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 42 of 214

 5 LED_ON = 2**10 #duty_cycle = 2^10

 6 LED_OFF = 0

 7
 8 # Set up the peripherals
 9 led = exp.pwm_out(exp.PORT0)

10
11 def set_led(val):
12 led.duty_cycle = val

13
14 # Main program
15 while True:
16 set_led(LED_ON)

Hints:

Real-world applications
PWM is used in many applications such as:

Computer Fans

Lights

DC Motor Controls

Electric Cookers

Voltage Regulators

Audio Effects

That's a lot of bits!
The CodeX has a 16-bit capacity.

That is or 65,536 bits.

It uses values from 0-6553 5.

Goals:

Change the value of LED_ON to 2^10, or 1024.

This is a low-power duty_cycle for the LED.

Change the value of LED_OFF to 0.

This is a no-power duty_cycle for the LED.

Change the LED setup to use PWM as an output peripheral.

The LED now accepts integer values instead of True and False.

Change the way the LED turns on.

Use led.duty_cycle instead of the value.

Change the argument in the function call to an integer value for duty_cycle.

You changed LED_ON to an integer, so you can use it as the argument.

216

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 43 of 214

Set up the LED by assigning the variable led as the output of exp.pwm_out(exp.PORT0).

In the set_led() function, assign led.duty_cycle as val.

Call set_led().

Tools Found: Loops, PWM, Variables, Functions

Solution:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 # duty_cycle = 2^10
 6 LED_OFF = 0
 7
 8 # Set up the peripherals
 9 led = exp.pwm_out(exp.PORT0)
10
11 def set_led(val):
12 led.duty_cycle = val
13
14 # Main program
15 while True:
16 set_led(LED_ON)

Objective 4 - Analog Input - The Potentiometer

Your code can dim the LED, but..

It would be nice to be able to dim the LED with an external peripheral!

How about an analog input?

Concept: Analog Input Peripherals

A peripheral used for analog input returns a value from 0 to .

Many analog inputs can put out 5 volts.
The CodeX ADC can only show up to 2.8 volts.
So, the voltage from the analog sensor needs to be cut in half.
Use a resistor voltage divider to cut the voltage from the analog sensor to the
CodeX ADC.

The simplest analog sensor in the LiftOff kit is the potentiometer.

The potentiometer returns a value from 0 to .
Rotating the potentiometer changes the analog value.
The potentiometer needs the resistor voltage divider to limit the ADC input.

Connect Peripheral

Connect the divider to PORT1 and the potentiometer to the divider on your CodeX.

2 − 116

2 − 116

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 44 of 214

Set up the potentiometer as an analog peripheral.

potentiometer = exp.analog_in(exp.PORT1)

Ooh! This is perfect!!

The potentiometer returns a value between 0 and .
The LEDs duty_cycle takes a value between 0 and .
Soon you'll be rotating the knob to dim the LED!

Check the 'Trek!

Follow the CodeTrek to set up the potentiometer and use it to control the LED.

Physical Interaction

Rotate the knob and run your program.

Try both ends of the potentiometer's range by turning the knob clockwise and counterclockwise.

You should be able to see a difference!
But maybe not as much as you'd expect...

Your eye's perception of brightness doesn't exactly match the power level of the light (lumens).

CodeTrek:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 #duty_cycle = 2^10
 6 LED_OFF = 0
 7
 8 # Set up the peripherals
 9 led = exp.make_pwm(exp.PORT0)
10 potentiometer = exp.analog_in(exp.PORT1)

11
12 def set_led(val):
13 led.duty_cycle = val
14
15 # Main program
16 while True:
17 set_led(potentiometer.value)

Hints:

2 − 116

2 − 116

Set up the potentiometer as an analog input peripheral.

Use the return value of the potentiometer as the argument for set_led().

The potentiometer value will be the LED's duty_cycle.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 45 of 214

Analog to Digital
An analog device measures continuously, so the data needs to be converted to a digital number for the computer.

Want to see what is happening with the potentiometer? Add a print() statement to your code and watch the console to see
the potentiometer's values.

def set_led(val):
 print("Reading", val)
 led.duty_cycle = val

Analog limits
The potentiometer may not get all the way down to 0 or up to 65535 ().

Goals:

Set up the potentiometer by assigning the variable potentiometer as the output of exp.analog_in(exp.PORT1).

Call set_led() and supply the argument potentiometer.value.

Tools Found: CPU and Peripherals, Analog to Digital Conversion, LiftOff Kit, Variables, Keyword and Positional Arguments

Solution:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 # duty_cycle = 2^10
 6 LED_OFF = 0
 7
 8 # Set up the peripherals
 9 led = exp.pwm_out(exp.PORT0)
10 potentiometer = exp.analog_in(exp.PORT1)
11
12 def set_led(val):
13 led.duty_cycle = val
14
15 # Main program
16 while True:
17 set_led(potentiometer.value)

Objective 5 - Motion Detector!!

Energy Conservation.

You can save even more energy if you only turn on the lights when people are in the room.

But how can you detect when people are in the room?

You can start by sensing motion.

The PIR sensor in the LiftOff Kit is a Passive Infrared (PIR) motion sensor:

It detects changes in infrared (IR) light from objects in its field of view.
It can tell you that something moved!
...but not what moved. Just assume it's an astronaut :-)

Connect Peripheral

Connect the motion sensor to PORT2 on your CodeX.

2 − 116

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 46 of 214

Most sensors in the LiftOff kit provide analog values. But the motion sensor is digital.

Like the button and switch, the motion sensor is read with exp.digital_in(exp.PORT2).

The motion sensor will output:

True when it detects motion
False when there is no motion

NOTE: The sensor will remain True for a brief period after motion has stopped.

Check the 'Trek!

Follow the CodeTrek to set up the motion sensor and use it to control the LED.

Physical Interaction: Try it!

Wave your arm to turn on the LED.
Be still... wait until your LED turns off.
Change the potentiometer by turning the knob while the LED is on.

NOTE: You may need to block the sensor if there is a lot of motion in your area.

CodeTrek:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 # duty_cycle = 2^10
 6 LED_OFF = 0
 7 MOTION_DETECTED = True # Motion Sensor

 8
 9 # Set up the peripherals
10 led = exp.pwm_out(exp.PORT0)
11 potentiometer = exp.analog_in(exp.PORT1)
12 motion_sensor = exp.digital_in(exp.PORT2)

13
14 def set_led(val):

Define a constant for the motion sensor that will mean motion detected.

You used constants like this for the switch and button in LiftOff.

Set up the motion sensor as a digital input peripheral.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 47 of 214

15 led.duty_cycle = val
16
17 while True:
18 if motion_sensor.value == MOTION_DETECTED:
19 set_led(potentiometer.value)
20 else:
21 set_led(LED_OFF)

Hints:

Blue Light
The motion sensor has its own Status LED!

Do you see a blue LED light up next to the connector?

It is showing you the status of motion detection.

That could be a handy debugging tool!

Turn off the light!
Remember that

duty_cycle=0 → 0% ON time each period

You changed the value of LED_OFF to 0.

So to turn OFF the LED, use LED_OFF as the argument:

set_led(LED_OFF)

Goals:

Set up the motion_sensor by assigning the variable motion_sensor as the output of exp.digital_in(exp.PORT2).

Define the constant MOTION_DETECTED.

Use an if statement with the condition motion_sensor.value == MOTION_DETECTED.

Call set_led(potentiometer.value) and set_led(LED_OFF).

Tools Found: LiftOff Kit, Analog to Digital Conversion, Binary Numbers, Variables, Constants, bool

Solution:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 # duty_cycle = 2^10
 6 LED_OFF = 0
 7 MOTION_DETECTED = True # Motion Sensor
 8
 9 # Set up the peripherals
10 led = exp.pwm_out(exp.PORT0)
11 potentiometer = exp.analog_in(exp.PORT1)
12 motion_sensor = exp.digital_in(exp.PORT2)
13
14 def set_led(val):
15 led.duty_cycle = val
16

Add an if statement to the while True loop

Use the return value of the motion sensor in the condition.
Turn on the LED when motion is detected.
Use the potentiometer's value for the duty_cycle.
To turn off the LED, the duty_cycle is 0.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 48 of 214

17 # Main program
18 while True:
19 if motion_sensor.value == MOTION_DETECTED:
20 set_led(potentiometer.value)
21 else:
22 set_led(LED_OFF)

Quiz 2 - Check for Understanding: Analog vs Digital

Question 1: Which peripheral is analog?

done Potentiometer

close Motion Sensor

close White LED

close Button

Question 2: What are the possible values for the Motion Sensor?

done True and False

close 0 and 1

close 0 to 65535

close All positive integers

Objective 6 - Delayed Shutdown

Give it some time!

It would probably be annoying if your lights shut off every time you stopped moving.

What if you want the lights to stay on a while each time motion is detected?

You could use a delay like sleep_ms() to keep the LED on.
Start by defining how long you want the lights to stay on in milliseconds.

This constant will keep the lights ON for 10 seconds (10,000 milliseconds):

ON_TIME = 10*1000 # 10 * 1000 milliseconds or 10 seconds

Check the 'Trek!

Follow the CodeTrek to define a constant for how long to keep the LED on and use it in a delay.

Physical Interaction: Move it!

CodeTrek:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 # duty_cycle = 2^10
 6 LED_OFF = 0
 7 MOTION_DETECTED = True # Motion Sensor
 8 ON_TIME = 10 * 1000 # 10 * 1000 milliseconds (10 seconds)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 49 of 214

 9
10 # Set up the peripherals
11 led = exp.make_pwm(exp.PORT0)
12 potentiometer = exp.analog_in(exp.PORT1)
13 motion_sensor = exp.digital_in(exp.PORT2)
14
15 def set_led(val):
16 led.duty_cycle = val
17
18 while True:
19 if motion_sensor.value == MOTION_DETECTED:
20 set_led(potentiometer.value)
21 sleep_ms(ON_TIME)

22 else:
23 set_led(LED_OFF)

Goals:

Define the constant ON_TIME.

Call sleep_ms(ON_TIME) after set_led(potentiometer.value).

Tools Found: Timing, Constants

Solution:

 1 from codex import *
 2 from time import sleep_ms
 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 # duty_cycle = 2^10
 6 LED_OFF = 0
 7 MOTION_DETECTED = True # Motion Sensor
 8 ON_TIME = 10 * 1000 # 10 * 1000 milliseconds (10 seconds)
 9
10 # Set up the peripherals
11 led = exp.pwm_out(exp.PORT0)
12 potentiometer = exp.analog_in(exp.PORT1)
13 motion_sensor = exp.digital_in(exp.PORT2)
14
15 def set_led(val):
16 led.duty_cycle = val
17
18 # Main program
19 while True:
20 if motion_sensor.value == MOTION_DETECTED:
21 set_led(potentiometer.value)
22 sleep_ms(ON_TIME)
23 else:
24 set_led(LED_OFF)

Objective 7 - Time to Blackout

Make your LED dimming knob work all the time!

The sleep_ms() in your loop is blocking your ability to change the brightness.

The sleep_ms() function doesn't return until after the requested time has elapsed.

Define a constant for how long to keep the light on after motion is detected.

10 seconds is a suggestion. For testing, you may want a shorter delay.
NOTE: 1000 milliseconds in 1 second

Use the constant ON_TIME in a delay to keep the LED on.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 50 of 214

So your code is stopped in its tracks while it waits for sleep_ms() to finish!

If you want the knob to work all the time, your code needs to continuously read it in a loop.

Is there a way to read the time while you're looping?

Concept: Non-Blocking Timer

Going to sleep blocks your code from doing anything else!

Luckily the Time library module provides a function that keeps track of time
in embedded code.
Your code can check the time whenever it needs to see how much time
has elapsed.

Like glancing at your watch... "Is it time yet?"

From the moment you connect the CodeX, the Timer is always running.

Here's a built-in function that returns exactly how many milliseconds have elapsed since the last
reboot:

Return number of milliseconds since reboot
time.ticks_ms()

Keeping track of time

Imagine you are the computer...

When motion is detected, you need to glance at your watch.

"Okay, 10 seconds from now I should turn the LED off."
Um, better write down the "turn-off time" somewhere.

Then keep checking the knob like always...
But also keep an eye on your watch.

And if the time is up, turn the LED off!

So there's your Algorithm. Now you just have to code it!

Check the 'Trek!

Follow the CodeTrek to use a loop to check the time and adjust the brightness.

Physical Interaction: Try it!

Run the code. Try changing the brightness of your LED during the ON_TIME window:

After motion is detected but before the LED turns OFF.

CodeTrek:

 1 from codex import *
 2 import time

 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 #duty_cycle = 2^10
 6 LED_OFF = 0
 7 MOTION_DETECTED = True
 8 ON_TIME = 10 * 1000 # 10 * 1000 milliseconds
 9
10 # Set up the peripherals
11 led = exp.pwm_out(exp.PORT0)
12 potentiometer = exp.analog_in(exp.PORT1)

Import the entire Time library module.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 51 of 214

13 motion_sensor = exp.digital_in(exp.PORT2)
14
15 def set_led(val):
16 led.duty_cycle = val
17
18 # Main program
19 turn_off_time = time.ticks_ms()

20
21 while True:
22 if motion_sensor.value == MOTION_DETECTED:
23 # Set the turn_off_time from when motion is detected
24 turn_off_time = time.ticks_ms() + ON_TIME

25 # Use a while loop to read the knob during ON_TIME
26 while time.ticks_ms() < turn_off_time:
27 set_led(potentiometer.value)

28 else:
29 set_led(LED_OFF)
30

Hints:

Tracking time
The ticks() and ticks_ms() functions are very useful for marking the passage of time in embedded code.

These counters start at zero when your device boots, and keep counting up from there while it is running.

To learn more about these functions, and others in the time module, check out the toolbox.

How much time?
The crew will probably want the lights to stay on longer than 10 seconds.

For testing your code, this is a good length of time. Then, after you know your code works, you can easily change the value of
the constant to the actual amount of time to leave the lights on.

Goals:

Import the entire time library.

Define the variable turn_off_time with the initial value time.ticks_ms().

Use a while loop with the condition time.ticks_ms() < turn_off_time.

Tools Found: Loops, Reboot, import, Variables, bool

Solution:

 1 from codex import *
 2 import time

Define a variable for ending time, and give it an initial value of the current time.

If motion is detected, update turn_off_time to the current time plus ON_TIME

This is the amount of time to delay, or keep the light on.

Use another loop to read the knob's value while keeping the light on.

The loop replaces the sleep_ms() statement.
This is a "loop within a loop" or a nested loop.
Watch your indenting!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 52 of 214

 3
 4 # Constants for peripherals
 5 LED_ON = 2**10 # duty_cycle = 2^10
 6 LED_OFF = 0
 7 MOTION_DETECTED = True # Motion Sensor
 8 ON_TIME = 10 * 1000 # 10 * 1000 milliseconds (10 seconds)
 9
10 # Set up the peripherals
11 led = exp.pwm_out(exp.PORT0)
12 potentiometer = exp.analog_in(exp.PORT1)
13 motion_sensor = exp.digital_in(exp.PORT2)
14
15 def set_led(val):
16 led.duty_cycle = val
17
18 # Main program
19 turn_off_time = time.ticks_ms()
20 while True:
21 if motion_sensor.value == MOTION_DETECTED:
22 # Set the new turn_off_time from when motion is detected
23 turn_off_time = time.ticks_ms() + ON_TIME
24 # Use a while loop to read the knob during ON_TIME
25 while time.ticks_ms() < turn_off_time:
26 set_led(potentiometer.value)
27 else:
28 set_led(LED_OFF)
29

Mission 3 Complete

You've completed project Conserve Energy!

...and you helped save enough energy to get the crew to Mars.

What else does the mission require?

Plenty! And you're developing the coding skills to make it happen!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 53 of 214

Mission 4 - Hatch Lock!
This project introduces the NeoPixel ring and will show you how to light up different colors!

Mission Briefing:

The crew's shuttle will dock with a larger supporting craft that launched ahead of the
mission.

The supporting craft will have extra fuel, supplies, and larger quarters for the crew to
live in.

There are eight locks that engage on the shuttle's hatch to get a proper seal
with the supporting craft.

The locks engage when a large mechanical lever is moved.
The crew will need an indication that all eight locks have engaged.
The mechanical engineering team has discovered an issue where individual
locks only engage 85% of the time.

Project: Hatch Lock will guide you through triggering the locks and displaying individual lock information.

Project Goals:

Learn about using RGB colors with NeoPixels.
Understand uses for microswitches.
Inform the crew when the hatch is properly secured to the supporting craft!!

Objective 1 - NeoPixels

The crew needs to know the status of the 8 locks on the hatch!

You can use the NeoPixel ring to display the status of each lock in color!

The NeoPixel ring has 8 separate RGB (Red, Green, Blue) LEDs called pixels.
Each pixel can be set to a unique color.
The pixels can be individually dimmed.

Check the emoji_objects Hints for fun facts about NeoPixels

Connect Peripheral

Connect the 8 RGB NeoPixel ring to PORT0 on your CodeX. Use the three loose wires
provided in the peripheral kit.

The back side of the NeoPixel ring has three labels:

G or ground is connected to the BLACK wire.
V or voltage is connected to the ORANGE wire.
DI or data input is connected to the YELLOW wire.

On the CodeX, the YELLOW wire goes to S, the ORANGE in the middle, and
the BLACK to the G.

Disconnect all other peripherals from the CodeX.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 54 of 214

Setup your NeoPixel on PORT0

Two pieces of information are needed when you set up the NeoPixel ring:

The port the NeoPixel ring is connected to.
The number of pixels connected.

Use this code:

np = neopixel.NeoPixel(exp.PORT0, 8) # 8 pixels on PORT0

It's time to turn on the first LED on the NeoPixel ring.

You can set the color of a pixel

The NeoPixel object np works similar to a Python list.
The list will hold an individual color for each of the 8 pixels.
Remember that you index a list item using brackets[].
Also recall that the index count starts at zero!

Create a New File!

Use the File → New File menu to create a new file called HatchLock.

Check the 'Trek!

Follow the CodeTrek to set the first pixel color and turn it on.

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up the peripherals
 5 power.enable_periph_vcc(True)

 6 np = neopixel.NeoPixel(exp.PORT0, 8)

 7
 8 while True:
 9 # Set the color for pixel 0
10 np[0] = (20, 0, 0)

The NeoPixel ring requires a lot of power, so you will
manually turn the power on.

Remember to import the libraries you will need.

Set up the NeoPixel ring on PORT0

It has 8 pixels on the ring.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 55 of 214

11

Hints:

Connecting the NeoPixel ring
Most of your connectors have wires the same three colors:
Black for GROUND
Red for POWER
Yellow for SIGNAL

The connector for the NeoPixel ring may have different colors. That is okay. Just make sure to connect the same color to the same
pin on the peripheral and the CodeX.

Optionally, you can connect the NeoPixel ring directly to the CodeX PORT.

Fun Facts about NeoPixels
NeoPixels can come in all sorts of shapes and sizes!
There are NeoPixel strips with 1000s of different pixels

They can be laid out in strips, rectangles, circles, etc.

More Fun Facts
NeoPixels are most commonly used for:
Room lighting
Hobbyist electronic displays
Clothing
Jewelry

Accessories (like a light-up snowboard!)

0 or 1
In the code, pixel 0 is the one nearest the connector of your Neopixel Ring.
If you look closely you'll see the pixels are numbered clockwise around the ring.
But the numbering starts with 1!

Don't let that confuse you. In software, the first item is usually index 0.

Humans usually count "1, 2, 3, ..."

Computers count "0, 1, 2, ..."

Goals:

Create a new file named HatchLock.

Set up the NeoPixel by assigning the variable np as the output of neopixel.NeoPixel(exp.PORT0, 8).

Assign the color of the first pixel as (20, 0, 0).

Tools Found: list, Variables

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up the peripherals
 5 power.enable_periph_vcc(True)
 6 np = neopixel.NeoPixel(exp.PORT0, 8)
 7

Set the color for the first pixel.

The first index in the np pixel list is 0.
The RGB color is (20, 0, 0), which is RED.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 56 of 214

 8 while True:
 9 # Set the color for pixel 0
10 np[0] = (20, 0, 0)
11

Objective 2 - How do NeoPixels Work?

Each pixel is made up of three LEDs.

One is Red
One is Green
One is Blue

Concept

NeoPixels create colors similar to how display screens do it in phones and TVs.

If you could look close enough at those displays you'd see something like this.
Lots of tiny RED/GREEN/BLUE dots!

A 4K display has 3840x2160 = 8,294,400 pixels!

Color Me a tuple of ints!

LED displays show color by blending (Red, Green, Blue) together.

Python uses a data type called a tuple to define a color
A tuple is a Python data type that holds a sequence of values.
A tuple is similar to a list; it can hold multipe values.

A tuple is perfect for defining color = (red, green, blue).
A tuple is defined with parenthesis () instead of square brackets [].
Unlike in a list, the values in a tuple can NOT be changed.

Can you see the R-G-B ?

When a Neopixel is brightly lit, the colors blend together visually.

But if the LEDs are very dim, maybe you can see them individually!

Change the value of the first pixel

np[0] = (2, 2, 2)

Run It!

Look closely at the first pixel. Can you see the 3 LEDs inside?

When you are setting an RGB value you are actually setting the brightness of the 3 LEDs.

The range for a single LED is 0 to 255
0 is OFF
255 is full brightness ON

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 57 of 214

Caution: Make sure you don't look directly at bright LEDs!

The rest of the code in this project will keep the brightness to 20 or less for an individual LED. A brightness of 255 is VERY
bright and you should not look directly at it!

You can use variables to set the brightness of each LED. Then combine the variables into a tuple.

Check the 'Trek!

Follow the CodeTrek to define a tuple for the color.

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up the peripherals
 5 power.enable_periph_vcc(True)
 6 np = neopixel.NeoPixel(exp.PORT0, 8)
 7
 8 # Brightness variables
 9 red = 0
10 green = 20
11 blue = 20

12 rgb_color = (red, green, blue)

13
14 while True:
15 # Set the color for pixel 0
16 np[0] = rgb_color

17

Hints:

Each pixel has 3 LEDs: Red, Green and Blue.

You control the brightness of each LED with a value from 0 (OFF) to 255 (full brightness ON).

That is a total of 256 levels of brightness. This requires 8 bits.

 = 256 (or values from 0 to 255)

Experiment with different values to see the difference in the brightness level.

Pick one color, like Blue.

Use three color variables to set the LED's color.

The colors are red, green and blue.
NOTE: Variable names should not be capitalized! Use all lowercase letters.

Use the three color variables to define a tuple for rgb_color.

What color do you think this will display?

Assign the tuple to the first pixel.

28

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 58 of 214

Start with a small brightness level, like 5.

Run the code.

Change the brightness level a little at a time and observe the brightness change.
np[0] = (0, 0, 5)

CAUTION: Don't use a brightness level above 2 0.

Goals:

Define red, green, and blue variables.

Define rgb_color as a tuple of red, green and blue.

Assign rgb_color to the first pixel.

Tools Found: tuple, int, Data Types, list, Variables

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up the peripherals
 5 power.enable_periph_vcc(True)
 6 np = neopixel.NeoPixel(exp.PORT0, 8)
 7
 8 # Brightness variables
 9 red = 0
10 green = 20
11 blue = 20
12 rgb_color = (red, green, blue)
13
14 while True:
15 # Set the color for pixel 0
16 np[0] = rgb_color
17

Quiz 1 - Check Your Understanding: NeoPixels

Question 1: How many brightness levels are there for each NeoPixel?

done 256

close 2

close 255

close 20

Question 2: How many binary bits are used for each NeoPixel color?

done 8

close 2

close 20

close 16

Objective 3 - Color Blend and Change!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 59 of 214

You already know that there are 3 LEDs in a single NeoPixel, so it is easy to make a pixel
either red, green, or blue.

What if you want yellow?

The LEDs are close enough together that the colors can blend together and appear as a
single color.

Here are some common RGB colors:

RGB_RED = (20, 0, 0)
RGB_GREEN = (0, 20, 0)
RGB_BLUE = (0, 0, 20)
RGB_MAGENTA = (20, 0, 20)
RGB_YELLOW = (20, 20, 0)
RGB_CYAN = (0, 20, 20)
RGB_WHITE = (20, 20, 20)
RGB_OFF = (0, 0, 0)

On the NeoPixel ring, the eight pixels are numbered 0 to 7.

You have already accessed the first pixel using np[0].
You can access the other 7 pixels in the same way, with their index number.

Check the 'Trek!

Follow the CodeTrek to turn on all 8 pixels.

Define constants for two colors.
Set half the pixels to one color.
Delay for 1 second.
Set the other half to the second color.

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up the peripherals
 5 power.enable_periph_vcc(True)
 6 np = neopixel.NeoPixel(exp.PORT0, 8)
 7
 8 # brightness variables and constants
 9 red = 10
10 green = 5
11 blue = 20
12 rgb_color = (red, green, blue)
13 RGB_RED = (20, 0, 0)
14 RGB_YELLOW = (20, 20, 0)

15
16 while True:
17 # Set the color for the even-numbered pixels
18 np[0] = RGB_RED
19 np[2] = RGB_RED
20 np[4] = RGB_RED
21 np[6] = RGB_RED

Define constants for at least two colors.

You can use any two colors.

Set the even-numbered pixels to the first color.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 60 of 214

22 sleep(1)

23 # Set the color for the odd-numbered pixels
24 np[1] = RGB_YELLOW
25 np[3] = RGB_YELLOW
26 np[5] = RGB_YELLOW
27 np[7] = RGB_YELLOW
28 sleep(1)

Hints:

Make Your Own Colors
Try different combinations of brightness levels for red, green and blue. When you find a color you like you can define a constant
for it. Then you can easily use the constant as the color value for any (or all) of the pixels.

For example:

RGB_LAVENDER = (10, 5, 20)
np[7] = RGB_LAVENDER

CONSTANT Colors
Did you notice the names of the color constants are NOT RED, GREEN or BLUE?

RED, GREEN and BLUE, as well as many other colors, are already defined in the codex library that you imported.

Use different descriptive names for your colors, like RGB_RED and RGB_BLUE.

Goal:

Assign a color to each of the eight NeoPixels.

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up the peripherals
 5 power.enable_periph_vcc(True)
 6 np = neopixel.NeoPixel(exp.PORT0, 8)
 7
 8 # brightness variables and constants
 9 red = 10
10 green = 5
11 blue = 20
12 rgb_color = (red, green, blue)
13 RGB_RED = (20, 0, 0)
14 RGB_YELLOW = (20, 20, 0)
15
16 while True:
17 # This is one solution for Obj. 3
18 # Students can use more than 2 colors, and a
19 # delay isn't required for validation.
20 # Set the color for the even-numbered pixels
21 np[0] = RGB_RED
22 np[2] = RGB_RED
23 np[4] = RGB_RED
24 np[6] = RGB_RED
25 sleep(1)
26 # Set the color for the odd-numbered pixels
27 np[1] = RGB_YELLOW

Delay for 1 second.

Set the odd-numbered pixels to the second color.

Delay for 1 second.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 61 of 214

28 np[3] = RGB_YELLOW
29 np[5] = RGB_YELLOW
30 np[7] = RGB_YELLOW
31 sleep(1)

Objective 4 - Fill all the positions!

A important component of coding is organizing the code into functions.

Your code inside the while True: loop is getting long!

Let's set all of the pixels to a single color with a function!
Add a function set_all_pixels() to your code.
It should use one parameter named rgb_color.

def set_all_pixels(rgb_color):
 np[0] = rgb_color
 np[1] = rgb_color
 np[2] = rgb_color
 np[3] = rgb_color
 np[4] = rgb_color
 np[5] = rgb_color
 np[6] = rgb_color
 np[7] = rgb_color

Then update the while True: loop to call the function.

NOTE: All pixels will now be the same color.

while True:
 set_all_pixels(rgb_color)
 sleep(1)

The function has a lot of repetitive code to just set the pixels!

What can you use to reduce the size of your code?

You can use a for loop!!!

The loop will need to iterate 8 times.
Using range(8) will start the loop variable at 0 and end with 7.
Each iteration of the loop will set a pixel.
Use the loop variable pixel as the index for the np list.

Check the 'Trek!

Follow the CodeTrek to use a for loop in the set_all_pixels() block.

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up the peripherals
 5 power.enable_periph_vcc(True)
 6 np = neopixel.NeoPixel(exp.PORT0, 8)
 7
 8 # brightness variables and constants
 9 red = 10
10 green = 5
11 blue = 20
12 rgb_color = (red, green, blue)
13 RGB_RED = (20, 0, 0)
14 RGB_YELLOW = (20, 20, 0)
15

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 62 of 214

16 # Set all pixels to one color
17 def set_all_pixels(rgb_color):

18 for pixel in range(8):
19 np[pixel] = rgb_color

20
21 while True:
22 # Set the colors for all pixels
23 set_all_pixels(RGB_RED)
24 sleep(1)

25 # Optional
26 set_all_pixels(RGB_YELLOW)
27 sleep(1)

Goals:

Define the function set_all_pixels(rgb_color).

Use a for loop that iterates over the sequence range(8).

Call set_all_pixels().

Tools Found: Functions, Parameters, Arguments, and Returns, Loops, Iterable

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up the peripherals
 5 power.enable_periph_vcc(True)
 6 np = neopixel.NeoPixel(exp.PORT0, 8)
 7
 8 # brightness variables
 9 red = 10
10 green = 5
11 blue = 20
12 rgb_color = (red, green, blue)
13 RGB_RED = (20, 0, 0)
14 RGB_YELLOW = (20, 20, 0)
15
16 # Set all pixels to one color
17 def set_all_pixels(rgb_color):
18 for pixel in range(8):
19 np[pixel] = rgb_color
20
21 while True:

Define the function set_all_pixels() with one parameter rgb_color.

Use a for loop to set all the pixels one color.

pixel is the loop variable and the index for np.
The loop variable starts at 0 and ends at 7, which
corresponds to the numbers of the pixels.

Call the function set_all_pixels() in the while True: loop.

Use a constant or rgb_color for the argument.

This step is optional.

You can call set_all_pixels() a second time with a different argument.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 63 of 214

22 # Set the color for all pixels
23 set_all_pixels(RGB_RED)
24 sleep(1)
25 # Optional
26 set_all_pixels(RGB_YELLOW)
27 sleep(1)

Objective 5 - Random Fun!

Unlock the potential of the NeoPixels - make a disco ball!

Even space travelers might need a little fun!!

You have defined colors using RGB and set the pixels to those colors. But what about random
colors?

You can use a loop to generate a different random color for each pixel, creating a cool disco
ball.

You already have variables for red, green, and blue, as well as rgb_color. Use these variables in
your loop to get a random color for each pixel.

Check the 'Trek!

Follow the CodeTrek to define a function disco_ball() that generates a random color for
each pixel.

Now cue the music and get your code on!

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 from random import randint

 4
 5 # Set up the peripherals
 6 power.enable_periph_vcc(True)
 7 np = neopixel.NeoPixel(exp.PORT0, 8)
 8
 9 # brightness variables and constants
10 RGB_RED = (20, 0, 0)
11 RGB_YELLOW = (20, 20, 0)
12
13 # Set all pixels a random color
14 def disco_ball():

15 for pixel in range(8):

16 red = randint(0, 20)

Import randint from the random module.

To generate a random color, you need integers.

Create a new function for the disco_ball().

Use a for loop to generate random colors for each pixel.

You can copy the for loop from set_all_pixels() and make changes.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 64 of 214

17 green = randint(0, 20)
18 blue = randint(0, 20)
19 rgb_color = (red, green, blue)

20 np[pixel] = rgb_color

21
22 # Set all pixels to one color
23 def set_all_pixels(rgb_color):
24 for pixel in range(8):
25 np[pixel] = rgb_color
26
27 # Main program
28 while True:
29 # Call the disco_ball function
30 disco_ball()
31 sleep(0.2)

Hints:

Random Numbers
The random library module in Python has several commands that will generate numbers in an unpredictable pattern.

The random module must be imported before the commands can be accessed. If you are only using one command, you can
import only that command from random.

Random Number Commands
Two commands that generate random integers are:

randrange()

Similar to the range() in a for loop.
It generates an integer between 0 and 1 less than the range.
Example: randrange(8) will return a number between 0 and 7.

randint()

Generates an integer that includes the low and high range.
Example: randint(1, 20) will return a number between 1 and 2 0.

Goals:

Import randint from the random module.

Define the function disco_ball().

Assign red, blue, and green to random values.

Tools Found: import, Functions

Move these lines of code from the brightness variables section above the function to inside the function.

Be careful with your indenting!
Change the assignment for each color to a random number.
You will get a random brightness for red, green and blue.
You don't want to go brighter than 20!

Now that you have a random color, set the pixel to the color.

Call disco_ball() in the while True: loop.

You can adjust the delay to get the disco affect you want.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 65 of 214

Solution:

 1 from codex import *
 2 from time import sleep
 3 from random import randint
 4
 5 # Set up the peripherals
 6 power.enable_periph_vcc(True)
 7 np = neopixel.NeoPixel(exp.PORT0, 8)
 8
 9 # Brightness variables and constants.
10 RGB_RED = (20, 0, 0)
11 RGB_YELLOW = (20, 20, 0)
12
13 # Set all pixels a random color
14 def disco_ball():
15 for pixel in range(8):
16 red = randint(0, 20)
17 green = randint(0, 20)
18 blue = randint(0, 20)
19 rgb_color = (red, green, blue)
20 np[pixel] = rgb_color
21
22 # Set all pixels to one color
23 def set_all_pixels(rgb_color):
24 for pixel in range(8):
25 np[pixel] = rgb_color
26
27 # Main program
28 while True:
29 # Call the disco_ball function
30 disco_ball()
31 sleep(0.2)

Quiz 2 - Check Your Understanding: Random LEDs

Question 1: What color LED is lit up in the RGB value (0, 20, 0)?

done Green

close Red

close Blue

close Yellow

Question 2: How many LEDs make up a single pixel in a NeoPixel?

done 3

close 8

close 1

close 10

Question 3: What is the range of numbers possible with randint(1, 10)?

done All integers between, and including, 1 through 10

close All integers between, and including, 1 through 9

close The integers 1 and 10 only

close All real numbers between 1 and 10

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 66 of 214

Objective 6 - Microswitch!

That was fun... Now it is time to get back to work.

Your newfound NeoPixel skills are needed to show the status of 8 locks on the space shuttle's hatch!

You will also need one more tool: something to trigger the system to check the locks.

You can use a microswitch!!

Connect Peripheral

Connect the microswitch to PORT2 on your CodeX.

Tell the crew if the hatch door is closed by lighting up the NeoPixels.

Your "Hatch Check" algorithm will be simple:

1. Read the microswitch.
Since a microswitch is just a button... You can use exp.digital_in(exp.PORT2) to read its value!

2. Display the HATCH STATUS:
If HATCH is OPEN, set all the pixels to RED.
Else if it's CLOSED, set all the pixels to GREEN.

3. Repeat!

Check the 'Trek!

Follow the CodeTrek to set up the microswitch and use it to turn all pixels RED if the hatch door is open and GREEN if the
hatch is closed.

Physical Interaction: Try it!

Run the code. Press the microswitch to simulate closing the hatch!

Microswitch open = RED pixels.
Microswitch closed = GREEN pixels.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 from random import randint
 4
 5 # Set up the peripherals
 6 power.enable_periph_vcc(True)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 67 of 214

 7 np = neopixel.NeoPixel(exp.PORT0, 8)
 8 microswitch = exp.digital_in(exp.PORT2)

 9
10 # Constants for the peripherals
11 HATCH_CLOSED = False # Microswitch
12 #TODO: Define a constant for HATCH_OPEN

13
14 # brightness variables and constants
15 RGB_RED = (20, 0, 0)
16 RGB_YELLOW = (20, 20, 0)
17 #TODO: Define a constant for RGB_GREEN

18
19 # Set all pixels a random color
20 def disco_ball():
21 for pixel in range(8):
22 red = randint(0, 20)
23 green = randint(0, 20)
24 blue =randint(0, 20)
25 rgb_color = (red, green, blue)
26 np[pixel] = rgb_color
27
28 # Set all pixels to one color
29 def set_all_pixels(rgb_color):
30 for pixel in range(8):
31 np[pixel] = rgb_color
32
33 # Main program
34 while True:
35 # Read the microswitch and display the NeoPixels
36 if microswitch.value == HATCH_CLOSED:
37 set_all_pixels(RGB_GREEN)
38 else:
39 set_all_pixels(RGB_RED)

Hints:

Microswitch vs Button
A microswitch is really just a button that's not intended for direct human interaction.

They are generally found in closed mechanical systems.

Real-World Applications
Microswitches are used in a vast number of products such as:

Set up the microswitch on PORT2.

It is a digital input peripheral.

Define constants for HATCH_CLOSED and HATCH_OPEN.

These constants will be used to compare with microswitch's return value.

Define a constant for RGB_GREEN.

If you don't already have this constant, define it now.
If the hatch door is closed, the NeoPixels need to show GREEN.

Use an if statement in the while True: loop to determine if the
hatch door is closed.

Compare the microswitch's return value to HATCH_CLOSED.
If the hatch door is closed, set the pixels to GREEN.
Else, set the pixels to RED.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 68 of 214

Appliances

Factory equipment

Automobiles

Touch detection for robots

Control True/False
The microswitch, like the button returns True when it is up (not pressed) and False when it is down (pressed).

Use a constant HATCH_CLOSED and assign it the value False, like you did for the switch.

Use another constant for HATCH_OPEN and assign it the value True.

Goals:

Set up the microswitch by assigning the variable microswitch as the output of exp.digital_in(exp.PORT2).

Define constants HATCH_OPEN and RGB_GREEN.

Use an if statement with the condition microswitch.value == HATCH_CLOSED.

Call set_all_pixels(RGB_GREEN) and set_all_pixels(RGB_RED).

Tools Found: Variables, Constants, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3 from random import randint
 4
 5 # Set up the peripherals
 6 power.enable_periph_vcc(True)
 7 np = neopixel.NeoPixel(exp.PORT0, 8)
 8 microswitch = exp.digital_in(exp.PORT2)
 9
10 # Constants for the peripherals
11 HATCH_CLOSED = False # Microswitch
12 HATCH_OPEN = True # Microswitch
13
14 # Brightness variables and constants.
15 RGB_RED = (20, 0, 0)
16 RGB_YELLOW = (20, 20, 0)
17 RGB_GREEN = (0, 20, 0)
18
19 # Set all pixels a random color
20 def disco_ball():
21 for pixel in range(8):
22 red = randint(0, 20)
23 green = randint(0, 20)
24 blue =randint(0, 20)
25 rgb_color = (red, green, blue)
26 np[pixel] = rgb_color
27
28 # Set all pixels to one color
29 def set_all_pixels(rgb_color):
30 for pixel in range(8):
31 np[pixel] = rgb_color
32
33 # Main program
34 while True:
35 # Read the microswitch and display the NeoPixels
36 if microswitch.value == HATCH_CLOSED:
37 set_all_pixels(RGB_GREEN)
38 else:
39 set_all_pixels(RGB_RED)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 69 of 214

Objective 7 - Problem with the Locks!

The engineers have told you that the locks will only lock properly 85% of the
time.

That means there is a 15% failure rate.
You need to show the crew which locks have failed!!

Right now your code assumes all 8 locks are working (GREEN) when
the microswitch is pressed.
The microswitch just means "Hatch Closed"...
You need a new function to check the locks!

Modify your code to accurately simulate the Hatch Locks!

You will need two more functions.

Define a function def is_lock_failed() that will return True if the lock fails to latch.
Define a function def check_all_locks() that will check each lock and set each pixel individually.

Call this function when the hatch is CLOSED.
This function will call is_lock_failed() for each lock (0-7).

Check the 'Trek!

Follow the CodeTrek to define the two functions. Then modify the code to simulate the hatch locks.

Physical Interaction: Try it!

Run the code. Press and hold the microswitch to simulate closing the hatch!

Hmmm... something is wrong. The pixels should show up red or green, but you can see them flickering.

What is happening?

When you call check_all_locks() it's like running a random simulation.
And your random simulation is happening every time the loop repeats, which is continuously.

This is a bug.

The simulation should only run once when the hatch is closed, and not continuously.

You will fix this in the next Objective.
Can your code keep track of whether the microswitch is currently pressed?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 from random import randint
 4
 5 # Set up the peripherals
 6 power.enable_periph_vcc(True)
 7 np = neopixel.NeoPixel(exp.PORT0, 8)
 8 microswitch = exp.digital_in(exp.PORT2)
 9
10 # Constants for the peripherals
11 HATCH_CLOSED = False # Microswitch
12 HATCH_OPEN = True # Microswitch
13
14 # Brightness variables and constants.
15 RGB_RED = (20, 0, 0)
16 RGB_YELLOW = (20, 20, 0)
17 RGB_GREEN = (0, 20, 0)
18
19 # Set all pixels a random color
20 def disco_ball():
21 for pixel in range(8):
22 red = randint(0, 20)
23 green = randint(0, 20)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 70 of 214

24 blue =randint(0, 20)
25 rgb_color = (red, green, blue)
26 np[pixel] = rgb_color
27
28 # Simulate if a lock was successful or failed
29 def is_lock_failed():
30 return randint(0, 99) < 15 # 15% failure

31
32 # Check each lock one at a time
33 def check_all_locks():
34 for pixel in range(8):

35 if is_lock_failed():
36 np[pixel] = RGB_RED
37 else:
38 np[pixel] = RGB_GREEN

39
40 # Set all pixels to one color
41 def set_all_pixels(rgb_color):
42 for pixel in range(8):
43 np[pixel] = rgb_color
44
45 while True:
46 # Read the microswitch and check each lock
47 if microswitch.value == HATCH_CLOSED:
48 check_all_locks()

49 else:
50 set_all_pixels(RGB_RED)

Hints:

Do the math!
According to a local statistician:

All 8 locks will successfully engage only 27.2% of the time.

15% Fail Rate
What is a 15% failure rate?

If you have 100 locks, 15 fail.

Simulate the failure rate by generating a random number between 0 and 9 9. Use the numbers between 0 and 14 to represent
the 15% failure rate. The numbers between 15 and 99 represent the 85% success rate.

Use a condition to compare the random number to 1 5.

Define a function that will return True 15% of the time.

Generate a random number between 0 and 99.
Compare the number to 15.
If less than 15, return True (or fail)
Otherwise return False (or pass)

Define a function that checks the status of each lock individually.

Use a for loop to check each lock one at a time.
You have 8 locks, so range(8).

If the lock fails, set the individual pixel RED.
Else, set the individual pixel GREEN.

Call check_all_locks() if the hatch is CLOSED.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 71 of 214

If less than 15, return True (or fail).

Otherwise return False (or pass).

The code will look like this:

return randint(0, 99) < 15

Goals:

Define the function is_lock_failed().

return True 15% of the time using randint(0, 99) < 15.

Define the function check_all_locks().

Use is_lock_failed() as the condition to an if statement.

Call check_all_locks().

Tools Found: Functions, Random Numbers, Computer Simulations, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3 from random import randint
 4
 5 # Set up the peripherals
 6 power.enable_periph_vcc(True)
 7 np = neopixel.NeoPixel(exp.PORT0, 8)
 8 microswitch = exp.digital_in(exp.PORT2)
 9
10 # Constants for the peripherals
11 HATCH_CLOSED = False # Microswitch
12 HATCH_OPEN = True # Microswitch
13
14 # Brightness variables and constants.
15 RGB_RED = (20, 0, 0)
16 RGB_YELLOW = (20, 20, 0)
17 RGB_GREEN = (0, 20, 0)
18
19 # Set all pixels a random color
20 def disco_ball():
21 for pixel in range(8):
22 red = randint(0, 20)
23 green = randint(0, 20)
24 blue =randint(0, 20)
25 rgb_color = (red, green, blue)
26 np[pixel] = rgb_color
27
28 # Simulate if a lock was successful or failed
29 def is_lock_failed():
30 return randint(0, 99) < 15 # 15% failure
31
32 # Check each lock one at a time
33 def check_all_locks():
34 for pixel in range(8):
35 if is_lock_failed():
36 np[pixel] = RGB_RED
37 else:
38 np[pixel] = RGB_GREEN
39
40 # Set all pixels to one color
41 def set_all_pixels(rgb_color):
42 for pixel in range(8):
43 np[pixel] = rgb_color
44
45 while True:
46 # Read the microswitch and check each lock
47 if microswitch.value == HATCH_CLOSED:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 72 of 214

48 check_all_locks()
49 else:
50 set_all_pixels(RGB_RED)

Objective 8 - Was the Button Pressed?

Track the state of your microswitch.

Sometimes your code needs to have memory.

You want to check the locks only when the microswitch is first pressed, and not continuously after that.

Right now, it doesn't remember whether the microswitch was just pressed or not.
You can give your code memory with a variable.

Use a variable to track whether the microswitch was pressed.

The initial value will be False (it has not yet been pressed).

was_pressed = False

Update this variable inside your loop when the microswitch changes.

Check the 'Trek!

Follow the CodeTrek to add a variable to remember the microswitch pressed status.

Physical Interaction: Try it!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 from random import randint
 4
 5 # Set up the peripherals
 6 power.enable_periph_vcc(True)
 7 np = neopixel.NeoPixel(exp.PORT0, 8)
 8 microswitch = exp.digital_in(exp.PORT2)
 9
10 # Constants for the peripherals
11 HATCH_CLOSED = False # Microswitch
12 HATCH_OPEN = True # Microswitch
13
14 # Brightness variables and constants.
15 RGB_RED = (20, 0, 0)
16 RGB_YELLOW = (20, 20, 0)
17 RGB_GREEN = (0, 20, 0)
18
19 # Set all pixels a random color
20 def disco_ball():
21 for pixel in range(8):
22 red = randint(0, 20)
23 green = randint(0, 20)
24 blue =randint(0, 20)
25 rgb_color = (red, green, blue)
26 np[pixel] = rgb_color
27
28 # Simulate if a lock was successful or failed
29 def is_lock_failed():
30 return randint(0, 99) < 15 # 15% failure
31
32 # Check each lock one at a time
33 def check_all_locks():
34 for pixel in range(8):
35 if is_lock_failed():
36 np[pixel] = RGB_RED
37 else:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 73 of 214

38 np[pixel] = RGB_GREEN
39
40 # Set all pixels to one color
41 def set_all_pixels(rgb_color):
42 for pixel in range(8):
43 np[pixel] = rgb_color
44
45 # Main program
46 was_pressed = False

47
48 while True:
49 # Read the microswitch and check each lock
50 if microswitch.value == HATCH_CLOSED and was_pressed == False:

51 was_pressed = True

52 check_all_locks()
53 elif microswitch.value == HATCH_OPEN:

54 was_pressed = False

55 set_all_pixels(RGB_RED)

Hints:

What about the disco ball?
The disco ball was pretty fun! And you still have the code. After you finish the mission and you can indicate when the hatch lock
is closed, you can add back in the disco ball.

This is optional!

If you want help in adding code for the disco ball, go to the next hint.

Turn on/off the disco ball
You will need a mechanical device to turn on/off the disco ball. Let's use the switch.

Set up the switch on PORT3

switch = exp.digital_in(exp.PORT3)

Define a variable that keeps track of the microswitch status.

The variable needs to be defined above the while True: loop.
The initial value is False, or not pressed.
Update the variable every time the status changes.

Modify the if statement to be True only when:

the hatch is closed AND
the microswitch hasn't been pressed.

Update was_pressed to True.

The microswitch status changed.

Change else to elif.

You only want the pixels RED if the hatch is OPEN.

Once the hatch opens, update was_pressed to False.

The microswitch status changed.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 74 of 214

The switch will need a constant for POWER_ON.

POWER_ON = False

Modify the if statement
Now you have everything you need to entertain the crew with a disco ball.

Modify the if statement in the while True: loop to include the disco ball as a branch.

The disco ball is the most restrictive condition, so it will go first.

while True:
 # Read the microswitch and switch and display the NeoPixels
 if switch.value == POWER_ON:
 disco_ball()
 sleep(0.2)
 elif microswitch.value == HATCH_CLOSED and was_pressed == False:
 was_pressed = True
 check_all_locks()
 elif microswitch.value == HATCH_OPEN:
 was_pressed = False
 set_all_pixels(RGB_RED)

Goals:

Use an if statement with the condition microswitch.value == HATCH_CLOSED and was_pressed == False.

Use an elif statement with the condition microswitch.value == HATCH_OPEN.

Assign was_pressed as True.

Assign was_pressed as False at least two times.

Tools Found: Variables, Loops, bool, undefined

Solution:

 1 from codex import *
 2 from time import sleep
 3 from random import randint
 4
 5 # Set up the peripherals
 6 power.enable_periph_vcc(True)
 7 np = neopixel.NeoPixel(exp.PORT0, 8)
 8 microswitch = exp.digital_in(exp.PORT2)
 9
10 # Constants for the peripherals
11 HATCH_CLOSED = False # Microswitch
12 HATCH_OPEN = True # Microswitch
13
14 # Brightness variables and constants.
15 RGB_RED = (20, 0, 0)
16 RGB_YELLOW = (20, 20, 0)
17 RGB_GREEN = (0, 20, 0)
18
19 # Set all pixels a random color
20 def disco_ball():
21 for pixel in range(8):
22 red = randint(0, 20)
23 green = randint(0, 20)
24 blue =randint(0, 20)
25 rgb_color = (red, green, blue)
26 np[pixel] = rgb_color
27
28 # Simulate if a lock was successful or failed
29 def is_lock_failed():
30 return randint(0, 99) < 15 # 15% failure
31
32 # Check each lock one at a time

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 75 of 214

33 def check_all_locks():
34 for pixel in range(8):
35 if is_lock_failed():
36 np[pixel] = RGB_RED
37 else:
38 np[pixel] = RGB_GREEN
39
40 # Set all pixels to one color
41 def set_all_pixels(rgb_color):
42 for pixel in range(8):
43 np[pixel] = rgb_color
44
45 # Main program
46 was_pressed = False
47
48 while True:
49 # Read the microswitch and check each lock
50 if microswitch.value == HATCH_CLOSED and was_pressed == False:
51 was_pressed = True
52 check_all_locks()
53 elif microswitch.value == HATCH_OPEN:
54 was_pressed = False
55 set_all_pixels(RGB_RED)

Mission 4 Complete

You've completed project Hatch Lock!

You now know all sorts of information about NeoPixels. You have also given the crew a safe, secure way to determine the position of
the hatch locks!

Great work!!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 76 of 214

Mission 5 - Alert System!
This project shows you how to read multiple analog sensors and display alerts to the crew!

Mission Briefing:

Time is of the essence if the ship has technical problems. The crew will need an
alerting system to tell them if something has gone wrong.

A risk analysis determined that two potential dangers exist and must be
monitored:

1. There are multiple electronic devices operating in the ship's electronics bay.
The crew must be notified immediately if the temperature in the electronics
bay exceeds a normal operating range.

2. Sections of the ship must be cordoned off in the event of a hull breach. The
crew must be notified immediately if an explosion is detected.

Project: Alert System will guide you through informing the crew if there is an emergency.

Project Goals:

Use multiple analog sensors
Learn to convert temperature values
Use an average calculation
Alert the crew if you detect an emergency situation!!

Objective 1 - Red Light

The first step is preparing our system to display an alert.

The red LED will be the alerting mechanism.
When the LED is ON the crew needs to take immediate action.
You will add sensors later.

First step is to get the LED working!

Connect Peripheral

Connect the red LED to PORT0 on your CodeX.

Disconnect any other peripherals from the CodeX.

Coding a Sensor / Alert framework

It would be easy to just turn ON the LED.

But you know you'll soon need the following loop:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 77 of 214

Read sensors
Check sensor values
Set alert output
Repeat!

Create a New File!

Use the File → New File menu to create a new file called AlertSystem.

Check the 'Trek!

Follow the CodeTrek to code your basic Sensor / Alert framework.

Run It!

Make sure your LED is always turned ON.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 # TODO: Define LED_ON
 6 # TODO: Define LED_OFF

 7
 8 # Set up the peripherals
 9 led = exp.digital_out(exp.PORT0)

10
11 def set_led(val):
12 # TODO: Set the led value

13
14 # Main Program
15 while True:
16 # TODO: Call set_led() to turn ON the red LED
17 sleep(1)

Hints:

Start the program with the libraries and constants you will need.

Import from codex and time.
Define constants for LED_ON and LED_OFF.

Set up the LED on PORT0.

You will use only one LED for this mission, so you don't have to
specifiy white or red.

Define a function for turning on/off the LED.

Use a parameter val.
led.value = val

Use a while True: loop to call the LED function.

set_led(LED_ON)
The red light should stay ON.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 78 of 214

Familiar Start
This program starts the same as the first two missions:

Import the libraries.

Set up the LED on PORT0

Set up constants for LED_ON and LED_OFF.

Define a function for turning on/off the LED.

Call the function in a while True: loop.

How much of this can you do on your own?

Save Some For Later
During this Objective, your loop will only set the alert output (turn the red LED ON). You will continue to modify the loop as you
work through the Objectives.

Goals:

Create a new file named AlertSystem.

Define constants LED_ON and LED_OFF.

Define the function set_led(val).

Assign the value of led.value as val.

Call set_led().

Tools Found: Loops, Constants, Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = True
 6 LED_OFF = False
 7
 8 # Set up the peripherals
 9 led = exp.digital_out(exp.PORT0)
10
11 def set_led(val):
12 led.value = val
13
14 # Main Program
15 while True:
16 set_led(LED_ON)
17 sleep(1)

Objective 2 - Blinking Red Alert

The next step is simulating a sensor for testing purposes.

The potentiometer will simulate the first sensor.

If the knob is rotated past half way it is time to alert the crew!
The potentionmeter will use the resistor voltage divider to limit the ADC input.

Connect Peripheral

Connect the divider to PORT1 and the potentiometer to the divider on your CodeX.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 79 of 214

Wouldn't it be more authentic if the light blinks when it is on?

Use what you learned about PWM to blink the red LED when it is ON.
You need to set the Frequency and Duty-Cycle.

Frequency (Analog Period)

To set your LED to blink two times per second, change the LED set up to:

led = exp.pwm_out(exp.PORT0, frequency=2)

Duty-Cycle

For now, you will use the potentiometer to control the LED.

Set the duty_cycle to half the highest value of the potentiometer.
Check the emoji_objects Hints for how the duty_cycle is calculated.
Change the LED_ON constant and the LED_OFF constant to integer values:

LED_ON = 2**15 # duty_cycle for LED
LED_OFF = 0

The constants will be passed to the parameter for in set_led():

def set_led(val):
 led.duty_cycle = val

Check the 'Trek!

Follow the CodeTrek to:

Set up the potentiometer on PORT1.
Modify your set_led(val) function to assign the duty_cycle to the LED.
Modify the while True: loop so the potentiometer controls the LED.

Physical Interaction: Try it!

Twist the knob back and forth and watch the red LED.

The LED should blink when the knob is turned up.
The LED should be OFF when the knob is turned down.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 80 of 214

 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty_cycle
 6 LED_OFF = 0

 7
 8 # Set up the peripherals
 9 led = exp.pwm_out(exp.PORT0, frequency=2)

10 potentiometer = exp.analog_in(exp.PORT1)

11
12 def set_led(val):
13 led.duty_cycle = val

14
15 # Main Program
16 while True:
17 if potentiometer.value > LED_ON:
18 set_led(LED_ON)
19 else:
20 set_led(LED_OFF)

Hints:

Attention! Analog Device
The potentiometer is an analog input sensor.

Set up the potentiometer with exp.analog_in(exp.PORT1)

Potentiometer Particulars
The value returned by the knob is between 0 and 65535 (or).
Half the highest value of the potentiometer is 65536/2 or 3276 8.
This is the same value as .

So if the value > 32768 → the knob has crossed the half-way point.

Goals:

Set up the LED by assigning the variable led as the output of exp.pwm_out(exp.PORT0, frequency=2).

In set_led(), assign led.duty_cycle as val.

In an if statement, use the condition potentiometer.value > BLINKING.

Change the value of the constants as integers for the duty_cycle.

LED_ON is assigned the value to make it blink.
It is halfway between 0 and
Or

216

215

Modify the LED set up to use PWM with a frequency of 2.

Set up the potentiometer on PORT1.

Remember: It is an analog input peripheral.

Modify set_led() to set the duty_cycle.

The ON duty-cycle is LED_ON.
The OFF duty-cycle is LED_OFF.

Modify the while True: loop so that the potentiometer controls the LED.

216

215

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 81 of 214

Call set_led() at least twice.

Tools Found: PWM, Variables, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty_cycle
 6 LED_OFF = 0
 7
 8 # Set up the peripherals
 9 led = exp.pwm_out(exp.PORT0, frequency=2)
10 potentiometer = exp.analog_in(exp.PORT1)
11
12 def set_led(val):
13 led.duty_cycle = val
14
15 # Main Program
16 while True:
17 if potentiometer.value > LED_ON:
18 set_led(LED_ON)
19 else:
20 set_led(LED_OFF)

Objective 3 - Show me the Values!

Streaming values from your sensor

Wouldn't it be nice if there was a way to continuously display sensor values to a screen?

Python's built-in print() function is made for that!

You'll need to open the Console Panel in CodeSpace to use this feature.
Use the menu button.
The Console Panel button is below the toolbox button.

The Console Panel will open below the Instructions Panel.
The Console Panel lets you see the output of a print() statement.
The Console Panel also lets you type in Python statements directly. This is called the REPL.

Concept: REPL

"Read Evaluate Print Loop"

REPL is a name for the "command line" that languages like Python offer.

Besides being a place to see print() statement output, the REPL is a great way to test out snippets of code, language
features, and APIs as you decide how to use them in your code.

The print() statement can do a lot more than just display text. You can give it multiple arguments:

strings
integers
lists

etc.

Example: print("Your name is", name, "and your address is", address)

Check the emoji_objects Hints for more details about the Console Panel and print().

Check the 'Trek!

Follow the CodeTrek to modify your code to print() a label and your knob's analog value each time the system loops.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 82 of 214

The output should look something like: "Knob value: 28536"

Physical Interaction: Try it!

Run the code. Rotate the knob back and forth and watch the values in the Console Panel.

Now you can see exactly what the value of your knob is!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7
 8 # Set up the peripherals
 9 led = exp.pwm_out(exp.PORT0, frequency=2)
10 potentiometer = exp.analog_in(exp.PORT1)
11
12 def set_led(val):
13 led.duty_cycle = val
14
15 # Main Program
16 while True:
17 print("Knob Value: ", potentiometer.value)

18
19 if potentiometer.value > LED_ON:
20 set_led(LED_ON)
21 print("Alert, alert, alert!")

22 else:
23 set_led(LED_OFF)

Hints:

The Console Panel
When you open the Console Panel, text will already show.

Ignore any text that is there for now.

Those messages are a side effect of stopping and starting your code.

You should see >>>_ with the cursor blinking.

The output from print() statements will display there.

The Console Panel
Your code will display output in real time, which is really fast.

That means the output will display so quickly you won't be able to read it.

After you stop the code, you can scroll back through the display to see the output.

Print Statement Particulars

Add a print() statement in the while True: loop to display the knob value.

Optional

You can also display an Alert message with the blinking light.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 83 of 214

When you add arguments to a print() statement, you will separate the arguments with a comma (,).

A string argument must be in quotation marks (" ").

A variable argument is NOT in quotation marks.

Print Statement Example
This example has four arguments:

Two string arguments

Two variable arguments

print("Your name is", name, "and your address is", address)

Goals:

Click the menu button at the lower-right to open the Console Panel.

Print potentiometer.value.

Tools Found: Print Function, REPL, Keyword and Positional Arguments, str, int, list, Analog to Digital Conversion

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7
 8 # Set up the peripherals
 9 led = exp.pwm_out(exp.PORT0, frequency=2)
10 potentiometer = exp.analog_in(exp.PORT1)
11
12 def set_led(val):
13 led.duty_cycle = val
14
15 # Main Program
16 while True:
17 print("Knob Value: ", potentiometer.value)
18
19 if potentiometer.value > LED_ON:
20 set_led(LED_ON)
21 print("Alert, alert, alert!")
22 else:
23 set_led(LED_OFF)
24

Objective 4 - Raw Temperature!

The first danger the crew should be alerted to is a high temperature in the
electronics bay.

High temperatures can lead to many potential issues:

Electronics could be irreversibly damaged.
The devices could catch fire.
Certain devices have the potential for explosion.

Modify your alerting system to monitor temperature in the ship's electronics bay.

Then you can alert the crew if the temperature exceeds a threshold!
Use the temperature sensor from the peripherals kit to monitor the temperature.
The temperature sensor is an analog input sensor just like the potentiometer!!, so your
code won't have to change much for this :-)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 84 of 214

Like the potentiometer and other analog input devices, the temperature sensor will use the resistor voltage divider to limit the
ADC input.

Connect Peripheral

Connect the temperature sensor to the divider on PORT1 on your CodeX.

First disconnect the potentiometer.

Know Your Sensor

The temperature sensor outputs exactly 0.75 Volts at 25°C

The output changes by ± 0.01 Volts per degree C

Wait! Volts?

This sensor's output is given in volts, but temp_sensor.value gives a raw ADC value from 0-65535, just like the Potentiometer.

You will need to convert the raw data to real units: Volts → °C.

Raw analog values won't mean much to the crew.

You'll need to write some conversion code!

The sensor manufacturer provided the calculation to do this.
Check the emoji_objects Hints for details about the temperature sensor and how it works.

Check the 'Trek!

Follow the CodeTrek to set up the temperature sensor and convert the raw temperature data to Celsius.

Run It!

Open the Console Panel and watch the temperature values.

Squeeze the sensor between your fingers to change the temperature.
Can you get temperatures that display the Alert message?
Can you get temperatures that turn off the message?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 85 of 214

 7
 8
 9 # Set up the peripherals
10 led = exp.pwm_out(exp.PORT0, frequency=2)
11 temp_sensor = exp.analog_in(exp.PORT1)

12
13 def set_led(val):
14 led.duty_cycle = val
15
16 def convert_temp_to_c(raw_temp):
17 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
18 degrees_c = raw_temp * 0.004577 - 50
19 return degrees_c

20
21 # Main Program
22 while True:
23 degree_c = convert_temp_to_c(temp_sensor.value)
24 print("Celsius: ", degree_c)

25
26 if degree_c > 26:

27 set_led(LED_ON)
28 print("Alert, alert, alert!")
29 else:
30 set_led(LED_OFF)

Hints:

Know Your Sensor
The temperature sensor is quite accurate.

It is typically accurate within ± 2° Celsius over a wide range (-40°C to +125°C).

It's also pre-calibrated at the factory.

It outputs exactly 0.75 Volts at 25°C
The output changes by ± 0.01 Volts per degree C

Convert Raw Data to Celsius
How can you convert a (0 - 65535) ADC value to °C?

The conversion can be split into two parts:

1. Convert ADC counts to voltage.

Set up the temperature sensor on PORT1.

Change the line of code for setting up the potentiometer to the temperature sensor.

Define a function for converting the raw temperature value to celsius.

Check the Hints for detailed information on the calculation.
The function returns the temperature reading in Celsius.
You do not need to type in the # comment.

Define a variable degrees_c and assign it the temperature reading in Celsius.

Then print() the converted temperature to the Console Panel.

Modify the if statement to compare degree_c.

Also change the value being compared from LED_ON to 26.
The value 26 is a suggestion. You can try different values.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 86 of 214

2. Convert voltage to temperature.

Using Ohm's Law:

Voltage = Current * Resistance

The change in temperature changes the resistance.

The change in resistance causes a change in voltage.

The temperature sensor measures the voltage to "read" the temperature.

The material in the temperature sensor has a near linear resistance/temperature gradient.

So use the slope/intercept formula to convert the raw data to Celsius:

y = mx + b

Try it out!

The temperature sensor outputs exactly 0.75 Volts at 25°C

Calculate b given:

y = 25, m = 100, x = 0.75

Convert Volts to Celsius
This calculation was provided by the sensor manufacturer. It converts the raw temperature values to degrees Celsius.

°C =

Simplifying the math:

°C =
°C =

Use this calculation in a function to convert to celsius.

Change It Up
The temperature sensor notices even small changes. When running the code, try:

Placing something very cool close to the sensor and get the temperature to drop.

Squeezing the sensor between your fingers to warm it up and get the temperature to rise.

Goals:

Define the function convert_temp_to_c(raw_temp).

Assign the variable degress_c as the output of convert_temp_to_c().

Print degree_c.

Use an if statement with the condition degress_c > 26

Tools Found: Analog to Digital Conversion, Functions, Variables, Print Function, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7
 8 # Set up the peripherals

​10deg ​er ​Vp m

((rawtemp/65535)∗3000mV −500mV)

​ − ​10
(rawtemp∗0.045777)

10
500

rawtemp ∗ 0.0045777 − 50

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 87 of 214

 9 led = exp.pwm_out(exp.PORT0, frequency=2)
10 temp_sensor = exp.analog_in(exp.PORT1)
11
12 def set_led(val):
13 led.duty_cycle = val
14
15 def convert_temp_to_c(raw_temp):
16 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
17 degrees_c = raw_temp * 0.004577 - 50
18 return degrees_c
19
20 # Main Program
21 while True:
22 degree_c = convert_temp_to_c(temp_sensor.value)
23 print("Celsius: ", degree_c)
24
25 if degree_c > 26:
26 set_led(LED_ON)
27 print("Alert, alert, alert!")
28 else:
29 set_led(LED_OFF)

Quiz 1 - Check Your Understanding: Temp Alert

Question 1: What are two properties that need to be set when using PWM?

done Frequency and duty-cycle

close Wavelength and amplitude

close Height and depth

close Time and distance

Question 2: What is the correct way to print() a string and a variable?

done print("My string", variable)

close print(My string, variable)

close print("My string", "variable")

close print("My string" variable)

Question 3: REPL can be used for many things. Which of the following can it NOT be used for?

done Changing the sensor PORT.

close See print() statement output.

close Test snippets of code.

close Test language features and APIs.

Question 4: What is output by the temperature sensor?

done Volts

close Temperature in degrees

close Temperature in celsius

close Sound waves

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 88 of 214

Objective 5 - It's Getting Hot in Here!

Now finish the temperature alerting system.

You can see the current temperature in the electronics bay, and you need to decide when
the alarm should be triggered.

How hot does the bay need to get before the crew is alerted?
This rise in temperature is the threshold.
You will simulate a rise in temperature with your fingers, so we will keep the
threshold small for now.

Here is the algorithm for completing the temperature alerting system.

Define a constant for TEMP_THRESHOLD.
Read the temperature sensor value first_temp to get the room temperature.
Calculate the temp_limit that determines when the alarm is triggered.
Use temp_limit in the if statement's condition.
If triggered, display an alert message, turn on the LED, and break out of the loop so the crew can reset the system after they
handle the emergency.

Check the 'Trek!

Follow the CodeTrek to finish setting up the temperature alerting system by following the algorithm.

Physical Interaction: Try it!

Run the code. Squeeze the temp sensor between your fingers until the temperature rises above your TEMP_THRESHOLD!

Make sure the Console Panel is open and you are watching the temperature values.
When the temperature is above the threshold, the first loop will break and the LED will continue to blink until the code is
stopped.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7 TEMP_THRESHOLD = 2 # Degrees Celsius

 8
 9 # Set up the peripherals
10 led = exp.pwm_out(exp.PORT0, frequency=2)
11 temp_sensor = exp.analog_in(exp.PORT1)
12
13 def set_led(val):
14 led.duty_cycle = val
15
16 def convert_temp_to_c(raw_temp):
17 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
18 degrees_c = raw_temp * 0.004577 - 50
19 return degrees_c
20
21 def set_alarm():
22 global temp_limit
23 first_temp = convert_temp_to_c(temp_sensor.value)

Define a constant TEMP_THRESHOLD and set it to 2.

The constant is for 2 Degrees Celsius above normal temperature.
This will allow you to simulate a high temperature to trigger an alert.
It should trigger the alarm when the temperature is 2 degrees above the sensor's first reading.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 89 of 214

24 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
25 temp_limit = first_temp + TEMP_THRESHOLD

26
27 # Main Program
28 set_alarm()

29 while True:
30 degree_c = convert_temp_to_c(temp_sensor.value)
31 print("Celsius: ", degree_c)
32
33 if degree_c > temp_limit:

34 print("High Temperature Alert!")
35 set_led(LED_ON)
36 break

37 else:
38 set_led(LED_OFF)
39
40 # After the loop breaks, keep the LED flashing
41 while True:
42 set_led(LED_ON)

Hint:

Temp Threshold
A threshold of 2 degrees isn't very realistic because change in temperature that small probably shouldn't cause an alarm.

To get the actual threshold your team of engineers would do some testing and decide how much hotter than "normal" the
bay should be to cause alarm.

For this simulation, 2 degrees is a good threshold, or value limit, for testing purposes.

Goals:

Define a function set_alarm() that reads the initial temperature and converts it to celsius.

The function will call convert_temp_to_c() to convert the temperature sensor's raw temp to Celsius.
The initial Celsius temperature is assigned to first_temp.

Assign the actual temperature threshold to temp_limit.

This is the temperature value that will trigger the alarm.
For this simulation, it will be 2 degrees above first_temp.
temp_limit is a global variable, used in the Main Program.

Remember to make it global.

Call set_alarm() in the Main Program before the while True: loop.

This function sets the temp_limit, so it needs to executed before the rest
of the code.

Use temp_limit in the if statement to trigger the alarm.

Add a print() statement to display a message about the danger.

Add a break to stop the loop.
The crew will need to reset the system after they handle the emergency!

Add another while True: loop that keeps the LED blinking.

This loop will only run after the break in the first loop.
It will keep the LED blinking until the crew fixes the problem and resets the alarm.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 90 of 214

Define the function set_alarm().

In it, assign the variable first_temp.

Call set_alarm().

In an if statement, use the condition degree_c > temp_limit.

Print "High Temperature Alert!".

Tools Found: Algorithm, Functions, Variables, bool, Print Function

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7 TEMP_THRESHOLD = 2 # Degrees Celsius
 8
 9 # Set up the peripherals
10 led = exp.pwm_out(exp.PORT0, frequency=2)
11 temp_sensor = exp.analog_in(exp.PORT1)
12
13 def set_led(val):
14 led.duty_cycle = val
15
16 def convert_temp_to_c(raw_temp):
17 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
18 degrees_c = raw_temp * 0.004577 - 50
19 return degrees_c
20
21 def set_alarm():
22 global temp_limit
23 first_temp = convert_temp_to_c(temp_sensor.value)
24 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
25 temp_limit = first_temp + TEMP_THRESHOLD
26
27 # Main Program
28 set_alarm()
29 while True:
30 degree_c = convert_temp_to_c(temp_sensor.value)
31 print("Celsius: ", degree_c)
32 if degree_c > temp_limit:
33 print("High Temperature Alert!")
34 set_led(LED_ON)
35 break
36 else:
37 set_led(LED_OFF)
38
39 # After the loop breaks, keep the LED flashing
40 while True:
41 set_led(LED_ON)

Objective 6 - Explosion Detection?

A second potential for danger aboard the shuttle is the risk of explosion or hull breach.

But, what can you use to detect an explosion?

How about listening for loud sounds!

The sound sensor is an analog sensor similar to the temperature sensor.
Check the emoji_objects Hints for more details about the sound sensor.

Connect Peripheral

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 91 of 214

Connect the divider to PORT2 and the sound sensor to the divider on your CodeX.

Like other analog input devices, the sound sensor will use the resistor voltage divider to limit the ADC input.

The sound sensor is an analog sensor and the temperature sensor is an analog sensor.

They should work the same way... Right?

Well, not exactly...
The sound sensor only detects momentary changes in sound levels.

Type in the Code

Set up the sound sensor. It is an analog peripheral.

sound_sensor = exp.analog_in(exp.PORT2)

Now change the print() statement in the while True: loop to display the sound sensor's raw value.

print("Raw Sound: ", sound_sensor.value)

Run It!

Open the Console Panel and watch the output.

Stop the program.
Scroll back through the values and look at the range of raw sound values.

You should notice the values stay within a range of about 1000.

In my environment, the raw sound values typically stay between 1580 and 1680.

This range of values is the "normal" sound of your environment.

What are the values when a loud bang is detected? Let's find out.
While testing the system, you just need to see the values that aren't in the "normal" range.

Check the 'Trek!

Follow the CodeTrek to display raw sound values that are outside the "normal" range.

Physical Interaction: Try it!

Run the code. Open the Console Panel and watch the output.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 92 of 214

Clap your hands close to the sound sensor.
Did a raw sound value display?
Clap several times. Then stop the program and look at the output.
Do you see high values and low values?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**16 // 2 # Half-power duty cycle
 6 LED_OFF = 0
 7 TEMP_THRESHOLD = 2 # Degrees Celsius
 8
 9 # Set up the peripherals
10 led = exp.pwm_out(exp.PORT0, frequency=2)
11 temp_sensor = exp.analog_in(exp.PORT1)
12 sound_sensor = exp.analog_in(exp.PORT2)

13
14 def set_led(val):
15 led.duty_cycle = val
16
17 def convert_temp_to_c(raw_temp):
18 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
19 degrees_c = raw_temp * 0.004577 - 50
20 return degrees_c
21
22 def set_alarm():
23 global temp_limit
24 first_temp = convert_temp_to_c(temp_sensor.value)
25 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
26 temp_limit = first_temp + TEMP_THRESHOLD
27
28 # Main Program
29 set_alarm()
30 while True:
31 degree_c = convert_temp_to_c(temp_sensor.value)
32 if sound_sensor.value > 1750:

33 print("Raw Sound: ", sound_sensor.value)

34
35 if degree_c > temp_limit:
36 print("High Temperature")
37 set_led(LED_ON)
38 break
39 else:
40 set_led(LED_OFF)
41
42 # After the loop breaks, keep the LED flashing
43 while True:
44 set_led(LED_ON)

Hints:

Set up the sound sensor on PORT2.

It is an analog input peripheral.
The code is similar to the temperature sensor.

Use an if statement to print() only the raw sound values that are outside the "normal" range.

1750 is used in this example as the top of the "normal" range.
Use the high value from your normal range.

Modify the print() statement to display the raw sound values that are above "normal".

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 93 of 214

The Sound Sensor
The sound sensor is essentially a small microphone.

It measures the intensity of the sound (whether the sound is quiet or loud).

This particular sensor is not accurate enough to analyze speech patterns.

The Console Panel
The print() output is displayed very quickly on the Console Panel. And there is a lot of data!

After each program run, you can close the Console Panel and then open it again to reset the output.

All the data is still there, but it is easier to see the output of each program run without getting overwhelmed.

Goals:

Set up the sound sensor by assigning the variable sound_sensor as the output of exp.analog_in(exp.PORT2).

In an if statement, use sound_sensor.value in the condition.

Print sound_sensor.value.

Tools Found: Variables, bool, Print Function

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7 TEMP_THRESHOLD = 2 # Degrees Celsius
 8
 9 # Set up the peripherals
10 led = exp.pwm_out(exp.PORT0, frequency=2)
11 temp_sensor = exp.analog_in(exp.PORT1)
12 sound_sensor = exp.analog_in(exp.PORT2)
13
14 def set_led(val):
15 led.duty_cycle = val
16
17 def convert_temp_to_c(raw_temp):
18 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
19 degrees_c = raw_temp * 0.004577 - 50
20 return degrees_c
21
22 def set_alarm():
23 global temp_limit
24 first_temp = convert_temp_to_c(temp_sensor.value)
25 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
26 temp_limit = first_temp + TEMP_THRESHOLD
27
28 # Main Program
29 set_alarm()
30 while True:
31 degree_c = convert_temp_to_c(temp_sensor.value)
32 if sound_sensor.value > 1750:
33 print("Raw sound: ", sound_sensor.value)
34
35 if degree_c > temp_limit:
36 print("High Temperature Alert!")
37 set_led(LED_ON)
38 break
39 else:
40 set_led(LED_OFF)
41
42 # After the loop breaks, keep the LED flashing

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 94 of 214

43 while True:
44 set_led(LED_ON)

Objective 7 - Sound Wave

The sound sensor outputs raw values that mimic a sound wave!

What does that mean?

A louder sound causes a HIGHER value AND
A louder sound causes a LOWER value

Take a look at the following diagram:

The sound sensor outputs values similar to the diagram.

Some raw values are high, and some are low.
The average of the raw values is in the middle - not too high or too low.
Check the emoji_objects Hints for more details about the sound sensor.

It is too unpredicable to determine the AVERAGE level of the sound sensor in advance.

The sound sensor average values change based on:
Background noise
Temperature
Barometric pressure

So, how can I write code that automatically determines the average level for me?

There are MANY different ways to calculate an average, depending on the situation.

For this mission you will use the Exponential Moving Average (EMA) calculation.

This calculation will put more weight on the newest value and less weight on the previous average.
Check the emoji_objects Hints for more details about EMA.

Check the 'Trek!

Follow the CodeTrek to calculate the average sound and display the values.

Run It!

Open the Console Panel and watch the output.

Stop the program.
Scroll back through the values.
Are the average sound values staying consistent?

CodeTrek:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 95 of 214

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7 TEMP_THRESHOLD = 2 # Degrees Celsius
 8 WEIGHT = 0.02 # each new raw sound has a 2% significance

 9
10 # Set up the peripherals
11 led = exp.pwm_out(exp.PORT0, frequency=2)
12 temp_sensor = exp.analog_in(exp.PORT1)
13 sound_sensor = exp.analog_in(exp.PORT2)
14
15 def set_led(val):
16 led.duty_cycle = val
17
18 def convert_temp_to_c(raw_temp):
19 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
20 degrees_c = raw_temp * 0.004577 - 50
21 return degrees_c
22
23 # calculates average of raw sound values using EMA
24 def calc_avg(avg, new_val):
25 avg_sound = avg * (1 - WEIGHT) + new_val * WEIGHT
26 return avg_sound

27
28 def set_alarm():
29 global temp_limit, avg_sound
30 first_temp = convert_temp_to_c(temp_sensor.value)
31 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
32 temp_limit = first_temp + TEMP_THRESHOLD
33 # Initial sound reading
34 avg_sound = sound_sensor.value

35
36 # Main Program
37 set_alarm()
38 while True:
39 degree_c = convert_temp_to_c(temp_sensor.value)
40 avg_sound = calc_avg(avg_sound, sound_sensor.value)
41 print("Avg Sound: ", avg_sound)

42 sleep(0.5)

Define a constant WEIGHT to use in the EMA calculation for the sound average.

The WEIGHT is 2%, or 0.02.

Define the function calc_avg(), which performs the EMA calculation for the average sound level.

It takes two parameters:
the current average avg.
the current new sound value new_val.

It returns the new average avg_sound.

Use the first sound value as the intial average.

This is part of setting the alarm.
avg_sound is a global variable.

Calculate a new avg_sound in the while True: loop.

Call calc_avg() with the arguments avg_sound and sound_sensor.value.
print() the avg_sound

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 96 of 214

43
44 if degree_c > temp_limit:
45 print("High Temperature Alert!")
46 set_led(LED_ON)
47 break
48 else:
49 set_led(LED_OFF)
50
51 # After the loop breaks, keep the LED flashing
52 while True:
53 set_led(LED_ON)

Hints:

High and Low Values!?
Did you notice both high and low raw sound values are displayed? Even though the if statement compared only a high value,
some low values printed as well.

Actual output from a test run:

Some NOTES about the sound sensor:
It will output values similar to the sound wave diagram.

Its average values are centered around a quiet sound level.

The faster you read it, the more the data looks like a wave.

It is more likely to read both high and low values the longer a sound lasts.

The EMA Calculation
This type of average puts more significance, or weight, on the last sample than previous samples.

The way sound waves go high and low at the same time means the average should stay consistent.

It doesn't require complicated math.

EMA uses a percentage to weight the new value more and the old values less.

The calculation looks like this:

new_average = (old_average * (1-WEIGHT)) + (new_value * WEIGHT)

Goals:

Define the function calc_avg(avg, new_val).

Add a half-second delay so the output isn't overwhelming.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 97 of 214

Assign the variable avg_sound.

return avg_sound.

Assign avg_sound as the output of calc_avg().

Print avg_sound.

Tools Found: Variables, Print Function

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7 TEMP_THRESHOLD = 2 # Degrees Celsius
 8 WEIGHT = 0.02 # each new raw sound value has a 2% significance
 9
10 # Set up the peripherals
11 led = exp.pwm_out(exp.PORT0, frequency=2)
12 temp_sensor = exp.analog_in(exp.PORT1)
13 sound_sensor = exp.analog_in(exp.PORT2)
14
15 def set_led(val):
16 led.duty_cycle = val
17
18 def convert_temp_to_c(raw_temp):
19 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
20 degrees_c = raw_temp * 0.004577 - 50
21 return degrees_c
22
23 # calculates average of raw sound values using EMA
24 def calc_avg(avg, new_val):
25 avg_sound = avg * (1 - WEIGHT) + new_val * WEIGHT
26 return avg_sound
27
28 def set_alarm():
29 global temp_limit, avg_sound
30 first_temp = convert_temp_to_c(temp_sensor.value)
31 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
32 temp_limit = first_temp + TEMP_THRESHOLD
33 # Initial sound reading
34 avg_sound = sound_sensor.value
35
36 # Main Program
37 set_alarm()
38 while True:
39 degree_c = convert_temp_to_c(temp_sensor.value)
40 avg_sound = calc_avg(avg_sound, sound_sensor.value)
41 print("Avg Sound: ", avg_sound)
42 sleep(0.5)
43
44 if degree_c > temp_limit:
45 print("High Temperature Alert!")
46 set_led(LED_ON)
47 break
48 else:
49 set_led(LED_OFF)
50
51 # After the loop breaks, keep the LED flashing
52 while True:
53 set_led(LED_ON)

Quiz 2 - Check Your Understanding: Noise Detection

Question 1: The sound sensor is NOT accurate enough to detect:

done a specific word

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 98 of 214

close an explosion

close two claps

close a loud bang

Question 2: The sound sensor will return a ____ value when the sound intensity increases?

done higher and lower

close higher

close lower

close average

Question 3: The temperature sensor will return a ____ value when the temperature increases?

done higher

close lower

close higher and lower

close average

Objective 8 - Put It All Together

You can now put the whole alerting system together!

First, modify your noise alert. Use this algorithm:

Set a constant LOUD_THRESHOLD to indicate an explosion.
This will be the amount over or under the sound average that causes alarm.

Calculate the variation of the last sound value from the average.
You have the sound average, so you should use it.
Subtract the average from the new raw sound value to get variation.

Test for loud sounds using a single if statement.
sensor value is HIGH if variation > LOUD_THRESHOLD or
sensor value is LOW if variation < -LOUD_THRESHOLD

Display a warning message and exit the loop when a loud noise is detected.

Second, delete unnecessary code from the set_LED() and temperature alert:

An else is not needed as part of the if statement.
Check the emoji_objects Hints for more details.

Check the 'Trek!

Follow the CodeTrek to combine the two alerts into one life-saving alert system.

Physical Interaction: Try it!

Run the code. Open the Console Panel and watch the output.

Trigger the temperature alert.
Run the code again.
Trigger the noise alert.

CodeTrek:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 99 of 214

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7 TEMP_THRESHOLD = 2 # Degrees Celsius
 8 LOUD_THRESHOLD = 75 # Sound level variation for alert

 9 WEIGHT = 0.02 # each new raw sound value has a 2% significance
10
11 # Set up the peripherals
12 led = exp.pwm_out(exp.PORT0, frequency=2)
13 temp_sensor = exp.analog_in(exp.PORT1)
14 sound_sensor = exp.analog_in(exp.PORT2)
15
16 def set_led(val):
17 led.duty_cycle = val
18
19 def convert_temp_to_c(raw_temp):
20 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
21 degrees_c = raw_temp * 0.004577 - 50
22 return degrees_c
23
24 # calculates average of raw sound values using EMA
25 def calc_avg(avg, new_val):
26 avg_sound = avg * (1 - WEIGHT) + new_val * WEIGHT
27 return avg_sound
28
29 # Set starting values of global variables
30 def set_alarm():
31 global temp_limit, avg_sound
32 first_temp = convert_temp_to_c(temp_sensor.value)
33 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
34 temp_limit = first_temp + TEMP_THRESHOLD
35 # Initial sound reading
36 avg_sound = sound_sensor.value
37
38 # Main Program
39 set_alarm()
40 while True:
41 degree_c = convert_temp_to_c(temp_sensor.value)
42 variation = sound_sensor.value - avg_sound

43 print("Variation:", variation,"Temp: ", degree_c)

44 # Noise alert
45 if variation > LOUD_THRESHOLD or variation < -LOUD_THRESHOLD:
46 print("Alert - Explosion detected!")
47 set_led(LED_ON)
48 break

49 # Temperature alert
50 if degree_c > temp_limit:

Define LOUD_THRESHOLD as the amount above or below the sound average.

Use 75 as the initial value, but you can adjust it if needed.

Calculate the variation in sound value.

This step needs to happen at the beginning of each iteration.

Modify the print() statement to display both variation and degree_c.

Add an if statement for the noise alert.

Use one if statement with two conditions.
Display an alert message, turn on the LED, and break.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 100 of 214

51 print("Alert - High Temperature")
52 set_led(LED_ON)
53 break

54
55 # Re-calculate average sound after every read
56 avg_sound = calc_avg(avg_sound, sound_sensor.value)
57 # Wait one second between every sensor read
58 sleep(1)

59
60 while True:
61 # Keep the LED blinking until reset (program quits)
62 set_led(LED_ON)

Hint:

No Need for Else
When the alarm is set, the LED will be off.

It only turns ON when the alarm is triggered.

When the alarm is triggered, the loop stops and the sensors are no longer read.

Then the crew must handle the emergency and reset the alarm.

So neither if statement in the while True: loop or set_led() needs an else.

Goals:

Calculate the variation and assign it to the variable variation.

Use an if statement with the condition variation > LOUD_THRESHOLD or variation < -LOUD_THRESHOLD.

Print "Alert - Explosion Detected!".

Tools Found: Loops, Variables, bool, Print Function

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 LED_ON = 2**15 # Half-power duty cycle
 6 LED_OFF = 0
 7 TEMP_THRESHOLD = 2 # Degrees Celsius
 8 LOUD_THRESHOLD = 75 # Sound level variation for alert
 9 WEIGHT = 0.02 # each new raw sound has a 2% significance
10
11 # Set up the peripherals
12 led = exp.pwm_out(exp.PORT0, frequency=2)
13 temp_sensor = exp.analog_in(exp.PORT1)
14 sound_sensor = exp.analog_in(exp.PORT2)
15
16 def set_led(val):
17 led.duty_cycle = val
18
19 def convert_temp_to_c(raw_temp):
20 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV

Delete the else: statement from the temperature alert.

Move the avg_sound update to below the if statements.

Add a one second delay so the output is not overwhelming.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 101 of 214

21 degrees_c = raw_temp * 0.004577 - 50
22 return degrees_c
23
24 # calculates average of raw sound values using EMA
25 def calc_avg(avg, new_val):
26 avg_sound = avg * (1 - WEIGHT) + new_val * WEIGHT
27 return avg_sound
28
29 # Set starting values of global variables
30 def set_alarm():
31 global temp_limit, avg_sound
32 first_temp = convert_temp_to_c(temp_sensor.value)
33 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
34 temp_limit = first_temp + TEMP_THRESHOLD
35 # Initial sound reading
36 avg_sound = sound_sensor.value
37
38 # Main Program
39 set_alarm()
40 while True:
41 degree_c = convert_temp_to_c(temp_sensor.value)
42 variation = sound_sensor.value - avg_sound
43 print("Variation: ", variation, "Temp: ", degree_c)
44
45 # Noise Alert
46 if variation > LOUD_THRESHOLD or variation < -LOUD_THRESHOLD:
47 print("Alert - Explosion Detected!")
48 set_led(LED_ON)
49 break
50 # Temperature Alert
51 if degree_c > temp_limit:
52 print("High Temperature Alert!")
53 set_led(LED_ON)
54 break
55
56 # Re-calculate average sound after every read
57 avg_sound = calc_avg(avg_sound, sound_sensor.value)
58 # Wait one second between every sensor read
59 sleep(1)
60
61 # After the loop breaks, keep the LED flashing until reset
62 while True:
63 set_led(LED_ON)

Objective 9 - Complete Alert System

Using the power of CodeX, you can add even more features to your
alert system!

The CodeX has many built-in features that can enhance the alert system.

Built-in speaker
Four pixel LEDs
Display screen
And much more!

To really get the crew's attention, add a siren and turn on the pixel LEDs, in addition to the
flashing red LED. Display the warning message on the screen.

You will need to import the sound library and define a variable for the tone.

Check the 'Trek!

Follow the CodeTrek to add an alarm and extra features to the alert system.

Physical Interaction: Try it!

Run the code. Open the Console Panel and watch the output.

Trigger the temperature alert.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 102 of 214

Trigger the noise alert.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3 from soundlib import *

 4
 5 siren = soundmaker.get_tone("violin")

 6
 7 # Constants for peripherals
 8 LED_ON = 2**15 # Half-power duty cycle
 9 LED_OFF = 0
10 TEMP_THRESHOLD = 2 # Degrees Celsius
11 LOUD_THRESHOLD = 75 # Sound level variation for alert
12 WEIGHT = 0.02 # each new raw sound has a 2% significance
13
14 # Set up the peripherals
15 led = exp.pwm_out(exp.PORT0, frequency=2)
16 temp_sensor = exp.analog_in(exp.PORT1)
17 sound_sensor = exp.analog_in(exp.PORT2)
18
19 def set_led(val):
20 led.duty_cycle = val
21
22 def convert_temp_to_c(raw_temp):
23 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
24 degrees_c = raw_temp * 0.004577 - 50
25 return degrees_c
26
27 # calculates average of raw sound values using EMA
28 def calc_avg(avg, new_val):
29 avg_sound = avg * (1 - WEIGHT) + new_val * WEIGHT
30 return avg_sound
31
32 # Siren warning sound for alarm, with pixel LEDs
33 def warning(pix_color):

34 pixels.set([pix_color, pix_color, pix_color, pix_color])

35 siren.set_pitch(440)
36 siren.play()
37 siren.glide(880, 1.5)
38 sleep(1.5)
39 siren.glide(440, 1.5)
40 sleep(1.5)
41 siren.stop()

Import the sound library

Define a variable for the tone.

This example uses violin tone, but you can experiment with different tones.

Define the function warning() for the warning sound and colored pixels.

It uses one parameter for the color of the pixel LEDs.

Set all the pixel LEDS to pix_color.

This is an example of code that sounds an alarm.

You can experiment with different pitches, tones and delays.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 103 of 214

42
43 # Set starting values of global variables
44 def set_alarm():
45 global temp_limit, avg_sound
46 first_temp = convert_temp_to_c(temp_sensor.value)
47 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
48 temp_limit = first_temp + TEMP_THRESHOLD
49 # Initial sound reading
50 avg_sound = sound_sensor.value
51
52 # Main Program
53 set_alarm()
54
55 while True:
56 degree_c = convert_temp_to_c(temp_sensor.value)
57 variation = sound_sensor.value - avg_sound
58 print("Variation:", variation,"Temp:", degree_c)
59
60 # Noise alert
61 if variation > LOUD_THRESHOLD or variation < -LOUD_THRESHOLD:
62 display.print("Alert!", scale=5)
63 display.print("Explosion!", scale=3)
64 set_led(LED_ON)
65 pix_color = ORANGE

66 break
67 # Temperature alert
68 if degree_c > temp_limit:
69 #TODO: display a print message for the alert
70 set_led(LED_ON)
71 #TODO: set pix_color

72 break
73
74 # Re-calculate average sound after every read
75 avg_sound = calc_avg(avg_sound, sound_sensor.value)
76 # Wait one second between every sensor read
77 sleep(1)
78
79 while True:
80 # Keep the LED blinking until reset (program quits)
81 set_led(LED_ON)
82 warning(pix_color)

Hint:

Coding Challenge
Using the power of the CodeX with the peripherals, you can make a truly awesome alert system. Some extra features you can
add to the system are:

Display a color or image on the screen to indicate the type of alarm.

Flash the pixel LEDS as well as the red LED.

In the noise alert, modify the print() statement to display on the screen.

Use display.print().
You can include a scale argument to make the text bigger.
Select a color for the pixel LEDs.

In the temperature alert, modify the print() statement to display on the screen.

Use display.print().
You can include a scale argument to make the text bigger.
Select a color for the pixel LEDs.

Call the warning() function in the final infinite loop.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 104 of 214

Use two different warning sounds, one for each alert.

Goals:

Import the sound library soundlib.

Define the function warning(pix_color).

Call siren.play().

Call display.print().

Call warning().

Tools Found: import, Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3 from soundlib import *
 4
 5 siren = soundmaker.get_tone("violin")
 6
 7 # Constants for peripherals
 8 LED_ON = 2**15 # Half-power duty cycle
 9 LED_OFF = 0
10 TEMP_THRESHOLD = 2 # Degrees Celsius
11 LOUD_THRESHOLD = 75 # Sound level variation for alert
12 WEIGHT = 0.02 # each new raw sound has a 2% significance
13
14 # Set up the peripherals
15 led = exp.pwm_out(exp.PORT0, frequency=2)
16 temp_sensor = exp.analog_in(exp.PORT1)
17 sound_sensor = exp.analog_in(exp.PORT2)
18
19 def set_led(val):
20 led.duty_cycle = val
21
22 def convert_temp_to_c(raw_temp):
23 # deg C = ((raw temp / 65536) * 3000 mV - 500 mV) / 10 deg per mV
24 degrees_c = raw_temp * 0.004577 - 50
25 return degrees_c
26
27 # calculates average of raw sound values using EMA
28 def calc_avg(avg, new_val):
29 avg_sound = avg * (1 - WEIGHT) + new_val * WEIGHT
30 return avg_sound
31
32 # Siren warning sound for alarm, with pixel LEDs
33 def warning(pix_color):
34 pixels.set([pix_color, pix_color, pix_color, pix_color])
35 siren.set_pitch(440)
36 siren.play()
37 siren.glide(880, 1.5)
38 sleep(1.5)
39 siren.glide(440, 1.5)
40 sleep(1.5)
41 siren.stop()
42
43 # Set starting values of global variables
44 def set_alarm():
45 global temp_limit, avg_sound
46 first_temp = convert_temp_to_c(temp_sensor.value)
47 # Add TEMP_THRESHOLD (2 degrees) to initial temperature for alert
48 temp_limit = first_temp + TEMP_THRESHOLD
49 # Initial sound reading
50 avg_sound = sound_sensor.value
51
52 # Main Program
53 set_alarm()

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 105 of 214

54 while True:
55 degree_c = convert_temp_to_c(temp_sensor.value)
56 variation = sound_sensor.value - avg_sound
57 print("Variation: ", variation, "Temp: ", degree_c)
58
59 # Noise Alert
60 if variation > LOUD_THRESHOLD or variation < -LOUD_THRESHOLD:
61 display.print("Alert!", scale=5)
62 display.print("Explosion!", scale=3)
63 set_led(LED_ON)
64 pix_color = ORANGE
65 break
66 # Temperature Alert
67 if degree_c > temp_limit:
68 display.print("Alert!", scale=5)
69 display.print("High Temp!", scale=3)
70 set_led(LED_ON)
71 pix_color = RED
72 break
73
74 # Re-calculate average sound after every read
75 avg_sound = calc_avg(avg_sound, sound_sensor.value)
76 # Wait one second between every sensor read
77 sleep(1)
78
79 # After the loop breaks, keep the LED flashing until reset
80 while True:
81 set_led(LED_ON)
82 warning(pix_color)

Mission 5 Complete

You've completed project Alert System!

The shuttle is now a much safer environment for the crew. The crew will rest easier knowing that their safety critical systems are
being monitored.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 106 of 214

Mission 6 - Life Support!
This project shows you how to operate a 360 continuous servo to circulate life-giving air through the ship!

Mission Briefing:

The air we breathe is one of the most fundamental elements of human life.

The spacecraft life support systems must be operational to guarantee mission
success!

The circulation of air is critical to survival in space.

It mixes oxygen with carbon dioxide to guarantee breathable air.
It collects condensation on the ship's hull and recycles it.
It mixes warm and cold air for the perfect environment for both crew and
electronics.

Project: Life Support will guide you through rotating fans to guarantee proper air
circulation on the ship.

Project Goals:

Learn about 360 Continuous Rotation Servos
Understand the capabilities of a 360 Servo
Add a power switch to the life support system
Explore the concept of a finite-state machine (FSM)
Circulate air to support the crew on their journey through space!!

Objective 1 - Introduction to Servos

You will need fans to operate the ship's life support system and circulate air.

When you think about a servo motor you probably assume that it is nothing more than a DC
electrically operated motor.

This is sort of true.

A servo is more than just a motor. It contains:

A DC motor
A controller circuit
An internal feedback mechanism
A gearbox

Small hobby servos generally come it two types:

The 360 Continuous Rotation Servo which can rotate continuously backward and
forward.
The 180 Positional Servo which can move to a specified position and hold in place.

You will need fans to operate the ship's life support system and circulate air.

The 360 servo can drive a fan to circulate air through the spacecraft.
Check the emoji_objects Hints for more details about servos.

Mechanical Connection to Servos

The rotating drive-shaft of a servo has ridges called splines that allow to you securely attach wheels, arms, or servo-horns to move
things.

There's a servo-horn in your kit!
Try attaching it to your servo so you can better see the motion.

Connect Peripheral

Connect the 360 Servo to PORT0 on your CodeX.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 107 of 214

Disconnect all other peripherals from the CodeX.
Attach one servo-horn to the servo.

NOTE: Your servo will have orange, red, and brown wires.

The ORANGE wire is inserted into the S
The BROWN wire is inserted into the G

How do I make the servo go?

Start by turning the servo clockwise. Servo motors require an analog control signal to operate.

You can send an analog control signal using PWM!
You will learn how the control signal works later in the project.
Start by getting it moving!!

Create a New File!

Use the File → New File menu to create a new file called LifeSupport.

Check the 'Trek!

Follow the CodeTrek to set up the servo and get it moving.

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep

 3
 4 # Constants for peripherals
 5 PERIOD = 20

 6
 7 # Set up peripherals

Import the libraries you will need.

Define a constant for the frequency.

PERIOD is used by the servo as part of PWM.
Check the emoji_objects Hints for more information about PERIOD.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 108 of 214

 8 fan = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 360 servo

 9
10 # Main program
11 while True:
12 fan.duty_cycle = 1000

Hints:

DC Motors
A DC motor can come in various configurations, but in the end it is just a motor.

When power is applied the motor turns.

A servo is a DC motor with more components.

Directionally Challenged
360 Servos have no sense of position, but they have the ability to rotate forward or backward continuously.

Continous Rotation Servos and DC Motors could have many REAL uses on a space mission:

Motors for rover wheels

Fans for life support

Hydraulic pump operation

Spin antennas / dishes

Reel in mechanical components

Servo Control Signal
Nearly all servos operate with a 50 Hertz (Hz) control signal, or PWM.

50 Hz = 50 pulses per second

50 Hz became a standard long ago due to the simplicity of the hardware design.

And, well, it just stuck...

So how long does it take for one pulse?

PERIOD = 1 second / 50 Hz

PERIOD = 0.02 seconds

or a 20 millisecond analog PERIOD.

Servo Accessories
The peripherals kit comes with a bag of parts for the servo. You will just need one servo-horn for this mission.

Set up the 360 servo on PORT0.

Use PWM.
The servo is an output peripheral.

Use a while True: loop to make the fan turn continuously.

Right now, just assign a value to the duty_cycle.
You can try different values and see what happens.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 109 of 214

Goals:

Create a new file named LifeSupport.

Declare the constant PERIOD.

Set up the 360 Servo by assigning the variable fan as the output of exp.pwm_out(exp.PORT0, frequency=FREQ).

Assign fan.duty_cylce as 1000.

Tools Found: Servos, PWM, Constants, Variables

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for the peripherals
 5 PERIOD = 20
 6
 7 # Set up the peripherals
 8 fan = exp.pwm_out(exp.PORT0, frequency=PERIOD)
 9
10 # Main program
11 while True:
12 fan.duty_cycle = 1000

Quiz 1 - Check Your Understanding: Servos

Question 1: Which type of device moves to a specified position and holds its place?

done 180 Servo

close 360 Servo

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 110 of 214

close Water Pump

close Potentiometer

Question 2: Which type of devices can rotate continuously forward and backward?

done 360 Servo

close 180 Servo

close Water Pump

close Potentiometer

Question 3: Which is NOT part of a servo motor?

done Speaker

close Controller Circuit

close DC Motor

close Gearbox

Objective 2 - Analog Control Signal

Time to Learn about Servo Analog Control!

How did your servo driving code work?

PWM uses a frequency, or analog period.

In the code, you set the analog period to 20 milliseconds/Hz.
Check the emoji_objects Hints for more details.

The duty_cycle sets the time the signal is on. The CodeX uses 16 bits (0-65535).

You want the servo to be

ON for 1 millisecond
OFF for 19 milliseconds so the calculation is:

CYCLE = / PERIOD

The 360 Continous Rotation Servo can rotate continuously backward and forward.

You can control the servo by adjusting the percentage of the CYCLE.

Percent of CYCLESpeed of Motor Rotation Direction
20 100% Clockwise
40 50% Clockwise
60 0% Stopped
80 50% Counterclockwise
100 100% Counterclockwise

Create a function to turn on the servo by calculating the duty_cycle for the speed and rotation direction.

Check the 'Trek!

Follow the CodeTrek to:

Define a function that calculates the duty_cycle.
Turn the fan forward, or clockwise, and then stop.
And then turn the fan backwards, or counterclockwise, and then stop.

216

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 111 of 214

Run It!

The fan should rotate forward, stop, rotate backward, and stop.

You can change the percentages to see the change in speed.
The servo will just stop moving if the limit is exceeded.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD

 7
 8 # Set up peripherals
 9 fan = exp.pwm_out(exp.PORT0, frequency=PERIOD) #360 Servo
10
11 # Set the servo by calculating the duty_cycle
12 def set_servo(percent):
13 return CYCLE * percent // 100

14
15 while True:
16 # Turn fan forwards at 50%
17 fan.duty_cycle = set_servo(40)
18 sleep(3)

19 # Stop the fan
20 fan.duty_cycle = set_servo(60)
21 sleep(3)

22 # Turn the fan backwards at 50%
23 fan.duty_cycle = set_servo(80)
24 sleep(3)
25 # Stop the fan
26 fan.duty_cycle = set_servo(60)
27 sleep(3)

Define a constant for CYCLE.

The constant will simplify the calculation for the duty_cycle.
The // division operator returns an integer instead of a float (or decimal).

Define set_servo() to return the duty_cycle value for the direction and speed.

It takes one parameter percent.
Calculate the percent of CYCLE.
The // division operator returns an integer instead of a float (or decimal).

Call set_servo() to turn the fan forwards.

For the argument, use a percent in the range for clockwise rotation.
Include a short delay to watch the rotation.

Call set_servo() to stop the fan.

For the argument, use a percent in the range for stopping.
Include a short delay.

Call set_servo() to turn the fan backwards.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 112 of 214

Hints:

Servo Control Signal
Nearly all servos operate with a 50 Hertz (Hz) control signal, or PWM.

50 Hz = 50 pulses per second

So how long does it take for one pulse?

PERIOD = 1 second / 50 Hz

PERIOD = 0.02 seconds, or a 20 milliseconds / Hz

Duty Cycles
The Servo on the CodeX takes a value between 0 and

In each analog period, you want the signal to be:

ON for 1 millisecond

OFF for 19 milliseconds

One CYCLE =

A percentage of one CYCLE will produce varying speeds in both directions.

Max and Min
The servo has a minimum and maximum duty_cycle limit.

The servo will just stop moving if the limit is extended in either direction.

Goals:

Define the constant CYCLE.

Define the function set_servo(percent).

Assign fan.duty_cycle at least three times.

Call set_servo() at least three times.

Tools Found: Constants, Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for the peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7
 8 # Set up the peripherals
 9 fan = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 360 servo
10
11 # Set the servo by calculating the duty_cycle
12 def set_servo(percent):
13 return CYCLE * percent // 100
14
15 # Main program
16 while True:

For the argument, use a percent in the range for counterclockwise rotation.
Include a short delay to watch the rotation.
Then call set_servo() again to stop the fan.
Include a short delay.

2 − 116

2 /PERIOD16

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 113 of 214

17 # Turn fan forwards at 50%
18 fan.duty_cycle = set_servo(40)
19 sleep(3)
20 # Stop the fan
21 fan.duty_cycle = set_servo(60)
22 sleep(3)
23 # Turn the fan backwards at 50%
24 fan.duty_cycle = set_servo(80)
25 sleep(3)
26 # Stop the fan
27 fan.duty_cycle = set_servo(60)
28 sleep(3)

Objective 3 - Down for Maintenance!

The crew needs the ability to shut down the fan periodically to perform maintenance.

The circulation system should have two different operating modes:

Active
Maintenance

You can use a switch to disable the circulation system temporarily.

The algorithm to transition between the modes looks like this:

if the switch is ON - Run the fan (Active Mode)
if the switch is OFF - Stop the fan (Maintenance Mode)

Connect Peripheral

Connect the switch to PORT2 on your CodeX.

Check the 'Trek!

Follow the CodeTrek to add the switch as a control.

Physical Interaction: Try it!

Press the switch IN to the ON position.
Press the switch OUT to the OFF position.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 114 of 214

 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 POWER_ON = False # Switch
 8 POWER_OFF = True # Switch

 9
10 # Set up peripherals
11 fan = exp.make_pwm(exp.PORT0, frequency=PERIOD) # 360 servo
12 switch = exp.digital_in(exp.PORT2)

13
14 # Set the servo by calculating the duty_cycle
15 def set_servo(percent):
16 return CYCLE * percent // 100
17
18 while True:
19 # Turn fan forwards at 50%
20 if switch.value == POWER_ON:
21 fan.duty_cycle = set_servo(40)

22 # Stop the fan
23 if switch.value == POWER_OFF:
24 fan.duty_cycle = set_servo(60)

Goals:

Define constants POWER_ON and POWER_OFF.

Set up the switch by assigning the variable switch as the output of exp.digital_in(exp.PORT2).

Use an if statement with the condition switch.value == POWER_ON.

Use an if statement with the condition switch.value == POWER_OFF.

Tools Found: Constants, Variables, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for the peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 POWER_ON = False # Switch
 8 POWER_OFF = True # Switch

Define two constants for the switch.

True is returned when the switch is out.
False is returned when the switch is in.

Set up the switch on PORT2.

It is a digital input peripheral.

If the switch is ON, turn the fan forward.

Call set_servo() to set the duty_cycle.
For the argument, use a percent in the range of clockwise rotation.

If the switch is OFF, turn the fan off.

Call set_servo() to set the duty_cycle.
For the argument, use a percent in the range of stopping.
Delete all other code from the while True: loop.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 115 of 214

 9
10 # Set up the peripherals
11 fan = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 360 servo
12 switch = exp.digital_in(exp.PORT2)
13
14 # Set the servo by calculating the duty_cycle
15 def set_servo(percent):
16 return CYCLE * percent // 100
17
18 # Main program
19 while True:
20 # Turn fan forwards at 50%
21 if switch.value == POWER_ON:
22 fan.duty_cycle = set_servo(40)
23 # Stop the fan
24 if switch.value == POWER_OFF:
25 fan.duty_cycle = set_servo(60)

Objective 4 - Software States!

Time to add more definition to the system's modes.

You already set up two different operating modes:

Active
Maintenance

But, what if you wanted to add a third mode... or a fourth... and there were many conditions involved?

You could use a concept called the Finite-State Machine.

Concept

Finite-State Machine

A Finite-State Machine, sometimes called simply a State Machine, is a key concept in software and hardware systems.

It is the idea that a program can only be in one of a known set of states or "phases" at any given time.

Keeping track of states helps you as a programmer understand and manage your code.
The software can transition from one state to another when certain conditions are met.
Check the emoji_objects Hints to see an example of a Finite-State Machine.

Time to Apply a Finite-State Machine to the Circulation System.

Check the 'Trek!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for the peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 POWER_ON = False # Switch
 8 POWER_OFF = True # Switch
 9 FORWARD = 40 # Percent for servo 50% clockwise
10 STOP = 60 # Percent for servo stopping

Define constants for FORWARD and STOP.

The constants are optional, but they are good practice.
Assign each constant the percent for each rotation.
No more magic numbers!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 116 of 214

11
12 # Set up peripherals
13 fan = exp.make_pwm(exp.PORT0, frequency=PERIOD) # 360 servo
14 switch = digitalio.DigitalInOut(exp.PORT2)
15
16 # Set the servo by calculating the duty_cycle
17 def set_servo(percent):
18 return CYCLE * percent // 100
19
20 # Main program
21 # Define variable for indicating the current state and
22 # set the initial duty_cycle to forward
23 state = "active"
24 fan.duty_cycle = set_servo(FORWARD)

25
26 while True:
27 # Current state is "off", so transition to "on"
28 if state == "maintenance":
29 if switch.value == POWER_ON:
30 state = "active"
31 fan.duty_cycle = set_servo(FORWARD)

32 # Current state is "on", so transition to "off"
33 elif state == "active":
34 if switch.value == POWER_OFF:
35 state = "maintenance"
36 fan.duty_cycle = set_servo(STOP)

Hint:

Finite-State Machine Example: Traffic Light
Most traffic lights are three colors:

Red

Yellow

Green

Traffic lights, in the United States of America, generally only have three states:

GREEN = Traffic can go

YELLOW = Caution the light will soon be red

RED = Traffic must stop

The transitions are simple and all transitions occur after a time delay:

Define the state variable and initialize it to "active".

Set the initial fan.duty_cycle to a forward speed.

Modify the while True: loop to use state in the if statement.

Compare state to "maintenance".
If True, read the switch.
When the switch is turned ON, transition to the next state by updating state.
Set fan.duty_cycle to a forward speed.

Add an elif branch to the if statement to check the second state.

Compare state to "active".
If True, read the switch.
When the switch is turned OFF, transition to the next state by updating state.
Set fan.duty_cycle to stop.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 117 of 214

GREEN only transitions to YELLOW

YELLOW only transitions to RED

RED only transitions to GREEN

Here is a visual representation of a state machine for a traffic light in the USA:

Goals:

Define the constants FORWARD and STOP.

Use an if statment with the condition state == "maintenance".

Use an elif statment with the condition state == "active".

Assign fan.duty_cycle as set_servo(FORWARD) at least twice.

Tools Found: bool, State, Loops, Constants

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for the peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 POWER_ON = False # Switch
 8 POWER_OFF = True # Switch
 9 FORWARD = 40 # Percent for servo 50% clockwise
10 STOP = 60 # Percent for servo stopping
11
12 # Set up the peripherals
13 fan = exp.pwm_out(exp.PORT0, frequency=PERIOD) #360 servo
14 switch = exp.digital_in(exp.PORT2)
15
16 # Set the servo by calculating the duty_cycle
17 def set_servo(percent):
18 return CYCLE * percent // 100
19
20 # Main program
21 # Define variable for indicating the current state and
22 # set the initial duty_cycle to forward
23 state = "active"
24 fan.duty_cycle = set_servo(FORWARD)
25
26 while True:
27 # Current state is "off", so transition to "on"
28 if state == "maintenance":
29 if switch.value == POWER_ON:
30 state = "active"
31 fan.duty_cycle = set_servo(FORWARD)
32 # Current state is "on", so transition to "off"
33 elif state == "active":
34 if switch.value == POWER_OFF:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 118 of 214

35 state = "maintenance"
36 fan.duty_cycle = set_servo(STOP)

Mission 6 Complete

You've completed project Life Support!

You got a chance to work with your first servo. The crew is thankful for the perfectly climate controlled cabin. They can now survive
the long trip through space!

Great work!!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 119 of 214

Mission 7 - Solar Tracking!
This project shows you how to operate a 180 positional servo to track the sun with solar panels!

Mission Briefing:

The space ship needs to harvest power from the sun.

The more efficient the solar panels can be the better!

Rotating the panels to track the sun can improve power generation
immensely.

Project: Solar Tracking will guide you through turning solar panels to track the
sun.

Project Goals:

Learn about 180 Positional Servos
Understand the capabilities of a 180 Servo
Add a light sensor to detect sun intensity
Rotate the ship's solar panels to the sun's general location!!

Objective 1 - 180 Servo

The ship's solar panels can be rotated to track the sun.

For this project, a sense of position matters.
Also, you want to hold the solar panels' position for a while and not have it
move continuously.
You will need the 180 servo for this task.
180 servos have a sense of position but cannot rotate a full 360 degrees.
Check the emoji_objects Hints for more information about the 180 servo.

Now attach the 180 servo!

The 180 servo will rotate the solar panels to track the sun.

Connect Peripheral

Connect the 180 servo to PORT0 on your CodeX.

Disconnect all other peripherals on the CodeX.
Attach one servo-horn to the servo.

NOTE: Your servo will have orange, red, and brown wires.

The ORANGE wire is inserted into the S
The BROWN wire is inserted into the G

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 120 of 214

What are the duty cycle settings for the 180 servo?

The duty cycle for a 180 servo determines which position it rotates to.

Percent of CYCLEAngle of RotationDirection of Rotation
25 90 Degrees Clockwise
50 45 Degrees Clockwise
75 0 Degrees Centered
100 45 Degrees Counterclockwise
125 90 Degrees Counterclockwise

Add a function to set the duty cycle for your servo.

Check the 'Trek!

Follow the CodeTrek to:

Set up the 180 servo on PORT0.
Define a function to calculate the duty_cycle.
Turn the panels 45 degrees in each direction.

Run It!

The servo panels should move to two different positions:

One rotating forward,
One rotating backward.

CodeTrek:

 1 from codex import *
 2 from time import sleep

 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7
 8 # Set up peripherals
 9 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo

10
11 # Set the servo by calculating the duty_cycle
12 def set_servo(percent):
13 return CYCLE * percent // 100

Import the libraries.

You do this every mission!

Define constants and set up the servo.

Constants PERIOD and CYCLE are used by the servo.
Set up the servo to use PWM on PORT0.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 121 of 214

14
15 while True:
16 # Rotate 45 degrees forward and then stop
17 panels.duty_cycle = set_servo(50)
18 sleep(2)
19 panels.duty_cycle = set_servo(75)
20 sleep(2)

21 # Rotate 45 degrees backward and then stop
22 panels.duty_cycle = set_servo(100)
23 sleep(2)
24 panels.duty_cycle = set_servo(75)
25 sleep(2)

Hints:

Positional Servos
180 servos can have many REAL uses on a space mission:
Rotating solar panels
Controlling robotic arms
Moving latches or locks

Positioning devices or antennas

Duty Cycle Chart
The chart for the 180 servo is similar to the chart for the 360 servo.
Both use a percent of the CYCLE.
Both can rotate forward and backward.
The 180 servo uses an angle instead of speed.
The 180 servo will hold its position instead of constantly spinning.

If you push the servo horn, the 180 servo will self-correct to the angle.

Starting Code
The program for this mission will start very much like the last mission.
Import the libraries.
Define constants for the peripherals.
Set up the servo on PORT0 as a PWM.
Define a function to calculate the duty cycle of the servo.

How much of this code can you do on your own?

Goals:

Create a new file named SolarTracking.

Set up the 180 servo by assigning the variable panels as the output of exp.pwm_out(exp.PORT0, frequency=FREQ).

Define the function set_servo(percent).

Call set_servo() at least four times.

Define the function set_servo() to calculate the duty_cycle.

Use one parameter percent.
This is the same function used in Mission Life Support.

Set the panel to 45 degrees forward for 2 seconds.

Then return to center for 2 seconds.

Set the panel to 45 degrees backward for 2 seconds.

Then return to center for 2 seconds.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 122 of 214

Tools Found: Servos, Variables, Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7
 8 # Set up peripherals
 9 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
10
11 # Set the servo by calculating the duty_cycle
12 def set_servo(percent):
13 return CYCLE * percent // 100
14
15 while True:
16 # Rotate 45 degrees forward and then stop
17 panels.duty_cycle = set_servo(50)
18 sleep(2)
19 panels.duty_cycle = set_servo(75)
20 sleep(2)
21 # Rotate 45 degrees backward and then stop
22 panels.duty_cycle = set_servo(100)
23 sleep(2)
24 panels.duty_cycle = set_servo(75)
25 sleep(2)

Objective 2 - Stay in Position!

The 180 servo will always strive to stay in position!

There is no OFF position for the 180 servo like there is for a 360 servo.

The 180 servo is always working to stay in position.
If you push it either direction it will always come back to its set position.

On the other hand...

It is normal for the 180 servo to continuously make small movements and
noise even after it gets in position.

The 180 servo does not turn OFF while sending a signal.
The only way to guarantee that the 180 servo will stop moving is to stop
the PWM signal completely.
You will need to break out of the loop to stop the servo.
This will also cause the 180 servo to stop striving for position!

Check the 'Trek!

Follow the CodeTrek to stop the 180 servo when the code is finished executing.

Physical Interaction

Run the code. While the servo is moving, push on the servo and try to move it to a different position.

Press BTN_A to break the loop.
The servo should stop.

CodeTrek:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 123 of 214

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
#@1
10
11 # Set up peripherals
12 panels = exp.make_pwm(exp.PORT0, frequency=PERIOD) # 180 servo
13
14 # Set the servo by calculating the duty_cycle
15 def set_servo(percent):
16 return CYCLE * percent // 100
17
18 while True:
19 # Rotate 45 degrees forward and then stop
20 panels.duty_cycle = set_servo(FORWARD)
21 sleep(2)
22 panels.duty_cycle = set_servo(CENTER)
23 sleep(2)
24 # Rotate 45 degrees backward and then stop
25 panels.duty_cycle = set_servo(BACKWARD)
26 sleep(2)
27 panels.duty_cycle = set_servo(CENTER)

28 sleep(2)
29
30 if buttons.was_pressed(BTN_A):
31 break

32
33 # Stop the servo
34 panels.duty_cycle = 0

Hints:

180 Servo
A positional servo is great for a system like a flap on an airplane!

When the pilot moves the flap to a certain position he or she expects it to stay there.

They do not want the wind rushing onto the flap to move it around.

Still ON!?
The peripherals will stay on after the program stops running.

One way to solve this problem is to break out of the loop and then turn off the peripherals.

Use a button press to break the loop.

Goals:

Define the constants FORWARD, CENTER, and BACKWARD.

Use the constants in the function calls to rotate the panels.

No magic numbers!

Use a button press to break out of the loop.

Stop the servo by setting the duty_cycle to 0.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 124 of 214

Call set_servo(FORWARD), set_servo(CENTER), and set_servo(BACKWARD).

Use an if statement with the condition buttons.was_pressed(BTN_A).

Assign panels.duty_cycle as 0.

Tools Found: Servos, Constants, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10
11 # Set up peripherals
12 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
13
14 # Set the servo by calculating the duty_cycle
15 def set_servo(percent):
16 return CYCLE * percent // 100
17
18 while True:
19 # Rotate 45 degrees forward and then stop
20 panels.duty_cycle = set_servo(FORWARD)
21 sleep(2)
22 panels.duty_cycle = set_servo(CENTER)
23 sleep(2)
24 # Rotate 45 degrees backward and then stop
25 panels.duty_cycle = set_servo(BACKWARD)
26 sleep(2)
27 panels.duty_cycle = set_servo(CENTER)
28 sleep(2)
29
30 if buttons.was_pressed(BTN_A):
31 break
32
33 # Stop the servo
34 panels.duty_cycle = 0

Quiz 1 - Check Your Understanding: 180 Servos

Question 1: A 180 servo is also known as:

done A positional servo

close A continuous rotation servo

close A potentiometer

close A DC motor

Question 2: When will a positional servo stop moving to the correct position?

done When you stop sending a PWM signal.

close Once it gets in position.

close After a delay.

close When the next command is executed.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 125 of 214

Question 3: What percent is used to stop the 180 servo?

done 0

close 75

close 100

close 50

Objective 3 - Light Sensor

Now that you can rotate the solar panels to a specific location, you need to detect
the sun to start tracking it.

Use the Light Sensor of course!

The light sensor is an analog input that provides the intensity of ambient light.
Like other analog input devices, the light sensor will use the resistor voltage divider to limit the
ADC input.

Connect Peripheral

Connect the divider to PORT1 and the light sensor to the divider on your CodeX.

Concept

The light sensor is built with a photoresistor.

A photoresistor creates less resistance when light hits it.
Less resistance allows more current to pass through.
Your device reads a higher analog value in its ADC as more current flows.

MORE LIGHT = HIGHER VALUE

Time to output some values to see how the light sensor works!

Use Python's built-in print() function for printing to the console panel.

You'll need to open the Console Panel in CodeSpace to use this function.
Use the menu button.
The Console Panel button is below the toolbox button.

The Console Panel command line is called the REPL.
"Read Evaluate Print Loop"

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 126 of 214

Check the 'Trek!

Follow the CodeTrek to set up the light sensor and read its values.

Physical Interaction: Try it

Run the code. Open the console panel and watch the light sensor values as they are displayed.

Shine a light on the sensor and get a high reading.
Get the normal reading with the room lighting.
Cover the sensor with your hands so it is completely dark and get the low reading.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10
11 # Set up peripherals
12 panels = exp.make_pwm(exp.PORT0, frequency=PERIOD) # 180 servo
13 light_sensor = exp.analog_in(exp.PORT1)

14
15 # Set the servo by calculating the duty_cycle
16 def set_servo(percent):
17 return CYCLE * percent // 100
18
19 # Use this loop for reading the light sensor values
20 while True:
21 print(light_sensor.value)
22 sleep(1)

23
24 while True:
25 # Rotate 45 degrees forward and then stop
26 panels.duty_cycle = set_servo(FORWARD)
27 sleep(2)
28 panels.duty_cycle = set_servo(CENTER)
29 sleep(2)
30 # Rotate 45 degrees backward and then stop
31 panels.duty_cycle = set_servo(BACKWARD)
32 sleep(2)
33 panels.duty_cycle = set_servo(CENTER)
34 sleep(2)
35
36 if buttons.was_pressed(BTN_A):
37 break
38
39 # Stop the servo
40 panels.duty_cycle = 0

Hint:

Set up the light sensor on PORT1

It is an analog input peripheral.

Use a while True: loop to read the values of the light sensor.

print() to the console panel.
This loop is for testing the peripheral and reading values.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 127 of 214

Light Sensor
Ambient light sensors are used in all kinds of real-world applications:

Night lights

Solar street lamps

Car interior lights

Real-world solar tracking devices

Goals:

Set up the light sensor by assigning the variable light_sensor as the output of exp.analog_in(exp.PORT1).

In a while True: loop:

Print light_sensor.value

sleep() for one second.

Tools Found: Analog to Digital Conversion, Print Function, REPL, Variables, Loops

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10
11 # Set up peripherals
12 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
13 light_sensor = exp.analog_in(exp.PORT1)
14
15 # Set the servo by calculating the duty_cycle
16 def set_servo(percent):
17 return CYCLE * percent // 100
18
19 # Use this loop for reading the light sensor values
20 while True:
21 print(light_sensor.value)
22 sleep(1)
23
24 while True:
25 # Rotate 45 degrees forward and then stop
26 panels.duty_cycle = set_servo(FORWARD)
27 sleep(2)
28 panels.duty_cycle = set_servo(CENTER)
29 sleep(2)
30 # Rotate 45 degrees backward and then stop
31 panels.duty_cycle = set_servo(BACKWARD)
32 sleep(2)
33 panels.duty_cycle = set_servo(CENTER)
34 sleep(2)
35
36 if buttons.was_pressed(BTN_A):
37 break
38
39 # Stop the servo
40 panels.duty_cycle = 0

Objective 4 - Analyzing Solar State

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 128 of 214

Time to match light intensity with the solar panel position.

Check the 'Trek!

Run It!

Run the code with

state = 'morning'

The panels should hold the 45 degree forward position.
Change the value of state to 'afternoon' and run the code.
Change the value of state to 'night' and run the code.
Do the panels hold the correct positions?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10
11 # Set up peripherals
12 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
13 light_sensor = exp.analog_in(exp.PORT1)
14
15 # Set the servo by calculating the duty_cycle
16 def set_servo(percent):
17 return CYCLE * percent // 100
18
19 # Main program
20 panels.duty_cycle = set_servo(FORWARD)
21 state = 'morning'

22
23 while True:

24 if state == 'morning':
25 panels.duty_cycle = set_servo(FORWARD)
26 elif state == 'afternoon':
27 panels.duty_cycle = set_servo(CENTER)
28 elif state == 'night':
29 panels.duty_cycle = set_servo(BACKWARD)

30

Define state and initialize it to 'morning'.

Set the initial panel position to FORWARD.
This will begin the main program.

You can delete the while True: loop that read the light sensor values.

It was used for testing.

Modify the while True: loop to use state to control the solar panels.

Use an if statement with three branches, one for each state.
Delete all other code from the loop.
But keep the button press! You need to break the loop to stop the peripherals.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 129 of 214

31 if buttons.was_pressed(BTN_A):
32 break
33
34 # Stop the servo
35 panels.duty_cycle = 0

Hints:

Tracking Sunlight
In the real-world you would probably need:

A complicated algorithm to monitor the ship's orientation vs the sun's position.

Algorithms can be fine-tuned to move the panels continuously.

Strings
In Python, you can use either double quotes (") or single quotes (') to indicate a string value.

You just need to be consistent - always use the same type of quotes with the value.

For example, "morning' is NOT acceptable.

But you could use either "morning" or 'morning'.

Goals:

Assign the variable state as 'morning'.

Use an if statement with the condition state == 'morning'.

Use two elif statements:

One with the condition state == 'afternoon'.

Another with the condition state == 'night'.

Tools Found: State, Variables, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10
11 # Set up peripherals
12 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
13 light_sensor = exp.analog_in(exp.PORT1)
14
15 # Set the servo by calculating the duty_cycle
16 def set_servo(percent):
17 return CYCLE * percent // 100
18
19 # Main program
20 panels.duty_cycle = set_servo(FORWARD)
21 state = 'morning'
22
23 while True:
24 if state == 'morning':
25 panels.duty_cycle = set_servo(FORWARD)
26 elif state == 'afternoon':
27 panels.duty_cycle = set_servo(CENTER)
28 elif state == 'night':

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 130 of 214

29 panels.duty_cycle = set_servo(BACKWARD)
30
31 if buttons.was_pressed(BTN_A):
32 break
33
34 # Stop the servo
35 panels.duty_cycle = 0

Objective 5 - Morning and Night

You have a system for a finite-state machine and a way to sense light, so let's put them to use.

Start by switching the state between 'morning' and 'night'.

You can switch states in your while True: loop.
You will ignore the 'afternoon' state for now.
You should use the finite-state machine diagram as a reference.

The finite-state machine for this project looks like this:

Your code needs to transition between the two states using a LOW_LIGHT threshold. Define a constant for the threshold based on
your light sensor readings.

Look at the results you wrote down from the console panel.
Identify a low value threshold for the light sensor.
During my testing, a low threshold is less than 15000.

Define a constant for the low light threshold:

LOW_LIGHT = 12000

Now use an if statement with the current light sensor reading and LOW_LIGHT to transition from 'morning' to 'night' and from 'night'
to 'morning'.

Check the 'Trek!

Follow the CodeTrek so the light sensor reading triggers the transitions.

Physical Interaction: Try it

Run the code.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 131 of 214

Start with the light sensor in daylight.
Cover the light sensor to simulate the dark.

Do the panels rotate to the correct position each time?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10 LOW_LIGHT = 12000 # Threshold ambient light for night-time

11
12 # Set up peripherals
13 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
14 light_sensor = exp.analog_in(exp.PORT1)
15
16 # Set the servo by calculating the duty_cycle
17 def set_servo(percent):
18 return CYCLE * percent // 100
19
20 # Main program
21 panels.duty_cycle = set_servo(FORWARD)
22 state = 'morning'
23
24 while True:
25 if state == 'morning':
26 if light_sensor.value < LOW_LIGHT:
27 state = 'night'
28 panels.duty_cycle = set_servo(BACKWARD)

29 elif state == 'afternoon':
30 panels.duty_cycle = set_servo(CENTER)

31 elif state == 'night':
32 if light_sensor.value > LOW_LIGHT:
33 state = 'morning'
34 panels.duty_cycle = set_servo(FORWARD)

35
36 if buttons.was_pressed(BTN_A):
37 break
38
39 # Stop the servo
40 panels.duty_cycle = 0

Define a constant for LOW_LIGHT that is the threshold for 'night'.

Assign the LOW_LIGHT value from your light sensor readings.

Modify the 'morning' state by adding an if statement to compare the light sensor reading.

If it is less than LOW_LIGHT, change the state to 'night'.
Set the panels to the BACKWARD position.

Do not make any changes here at this time.

Modify the 'night' state by adding an if statement to compare the light sensor reading.

If it is greater than LOW_LIGHT, change the state to 'morning'.
Set the panels to the FORWARD position.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 132 of 214

Goals:

Define the constant LOW_LIGHT.

Use an if statement with the condition light_sensor.value < LOW_LIGHT.

Use an if statement with the condition light_sensor.value > LOW_LIGHT.

Assign the variable state as 'night'.

Tools Found: State, Constants, bool, Variables

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10 LOW_LIGHT = 12000 # Threshold ambient light for night-time
11
12 # Set up peripherals
13 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
14 light_sensor = exp.analog_in(exp.PORT1)
15
16 # Set the servo by calculating the duty_cycle
17 def set_servo(percent):
18 return CYCLE * percent // 100
19
20 # Main program
21 panels.duty_cycle = set_servo(FORWARD)
22 state = 'morning'
23
24 while True:
25 if state == 'morning':
26 if light_sensor.value < LOW_LIGHT:
27 state = 'night'
28 panels.duty_cycle = set_servo(BACKWARD)
29 elif state == 'afternoon':
30 panels.duty_cycle = set_servo(CENTER)
31 elif state == 'night':
32 if light_sensor.value > LOW_LIGHT:
33 state = 'morning'
34 panels.duty_cycle = set_servo(FORWARD)
35
36 if buttons.was_pressed(BTN_A):
37 break
38
39 # Stop the servo
40 panels.duty_cycle = 0

Objective 6 - Debouncing

There is a small problem with your state machine!

The state transitions rely on light values dropping or rising continuously. Unfortunately, real-world sensors are almost never perfect.

Analog inputs can very easily bounce around.

Examine this chart:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 133 of 214

The state is transitioning between 'morning' and 'night' at the LOW_LIGHT threshold.

But...it is transitioning twice instead of the expected single transition.

This is called bouncing. This could become an even BIGGER problem as you add more states to the system.

You do not want your system inadvertently changing to an unexpected state!!

What can you do to solve this problem?

You can just delay before taking the next reading.
This will reduce the opportunity for bouncing around threshold values.

Check the 'Trek!

Add a simple delay to debounce your application's state transitions. A half-second should be enough!

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10 LOW_LIGHT = 12000 # Threshold ambient light for night
11
12 # Set up peripherals
13 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
14 light_sensor = exp.analog_in(exp.PORT1)
15
16 # Set the servo by calculating the duty_cycle
17 def set_servo(percent):
18 return CYCLE * percent // 100
19
20 # Main program
21 panels.duty_cycle = set_servo(FORWARD)
22 state = 'morning'
23
24 while True:
25 if state == 'morning':
26 if light_sensor.value < LOW_LIGHT:
27 state = 'night'
28 panels.duty_cycle = set_servo(BACKWARD)
29 elif state == 'afternoon':
30 panels.duty_cycle = set_servo(CENTER)
31 elif state == 'night':
32 if light_sensor.value > LOW_LIGHT:
33 state = 'morning'
34 panels.duty_cycle = set_servo(FORWARD)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 134 of 214

35
36 sleep(0.5)

37
38 if buttons.was_pressed(BTN_A):
39 break
40
41 # Stop the servo
42 panels.duty_cycle = 0

Hint:

What are some events that could cause bouncing?
A flicker in a lightbulb causing an inconsistent reading on a light sensor

A user pressing a button with varied pressure causing multiple "presses"

Electricity jumping between closing metal contacts

A user clicking a mouse multiple times accidentally

Goal:

Call sleep(0.5).

Tools Found: State, Debouncing, Timing

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10 LOW_LIGHT = 12000 # Threshold ambient light for night
11
12 # Set up peripherals
13 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
14 light_sensor = exp.analog_in(exp.PORT1)
15
16 # Set the servo by calculating the duty_cycle
17 def set_servo(percent):
18 return CYCLE * percent // 100
19
20 # Main program
21 panels.duty_cycle = set_servo(FORWARD)
22 state = 'morning'
23
24 while True:
25 if state == 'morning':
26 if light_sensor.value < LOW_LIGHT:
27 state = 'night'
28 panels.duty_cycle = set_servo(BACKWARD)
29 elif state == 'afternoon':
30 panels.duty_cycle = set_servo(CENTER)
31 elif state == 'night':
32 if light_sensor.value > LOW_LIGHT:
33 state = 'morning'

Add a short delay to debounce the state transitions.

The delay can be a little longer or shorter than half a second.
Watch your indenting! The delay is NOT part
of the if statement block.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 135 of 214

34 panels.duty_cycle = set_servo(FORWARD)
35 # debounce
36 sleep(0.5)
37
38 if buttons.was_pressed(BTN_A):
39 break
40
41 # Stop the servo
42 panels.duty_cycle = 0

Quiz 2 - Check Your Understanding: Light Sensors

Question 1: What type of peripheral is the light sensor?

done Analog input

close Analog output

close Digital input

close Variable input

Question 2: In a light sensor reading, MORE LIGHT =

done Higher values

close Lower values

close Consistent values

close Inconsistent values

Question 3: A flickering light bulb could cause:

done Bouncing

close Transitioning

close An error

close The program to stop

Question 4: What is one way to debounce a state transition?

done Add a short delay between readings.

close Change the value of the constant.

close Use a different peripheral.

close Change the condition.

Objective 7 - Simulate the Sun

You need direct sunlight for the afternoon state.

Attach the white LED to simulate the sun!

Connect Peripheral

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 136 of 214

Connect the white LED to PORT2 on your CodeX.

Now that you have "sunlight", use it to find the HIGH_LIGHT threshold.

print() the light sensor readings to the Console Panel and observe the high values when the white LED is close to the sensor.

Check the emoji_objects Hints for the algorithm.

Check the 'Trek!

Follow the CodeTrek to set up the white LED as a sun simulator and read the light sensor to find the high light threshold.

Physical Interaction

Run the code. Move the white LED close to the light sensor to watch the values increase.

When the LED is close to the light sensor make note of the highest values.

The values should go higher than 30000
This will be your high light threshold

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10 LOW_LIGHT = 12000 # Threshold ambient light for night
11 #TODO: Define the constants `LED_ON` and `LED_OFF`

12
13 # Set up peripherals
14 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
15 light_sensor = exp.analog_in(exp.PORT1)
16 led = exp.digital_out(exp.PORT2)

Define constants for the LED.

LED_ON is True.
LED_OFF is False.

Set up the LED on PORT2.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 137 of 214

17
18 # Set the servo by calculating the duty_cycle
19 def set_servo(percent):
20 return CYCLE * percent // 100
21
22 def set_led(val):
23 #TODO: set the value of the LED

24
25 # Main program
26 panels.duty_cycle = set_servo(FORWARD)
27 state = 'morning'
28 set_led(LED_ON)

29
30 while True:
31 print("Light sensor: ", light_sensor.value)

32
33 if state == 'morning':
34 if light_sensor.value < LOW_LIGHT:
35 state = 'night'
36 panels.duty_cycle = set_servo(BACKWARD)
37 elif state == 'afternoon':
38 panels.duty_cycle = set_servo(CENTER)
39 elif state == 'night':
40 if light_sensor.value > LOW_LIGHT:
41 state = 'morning'
42 panels.duty_cycle = set_servo(FORWARD)
43
44 sleep(0.5)
45
46 if buttons.was_pressed(BTN_A):
47 break
48
49 # Stop the servo and LED
50 panels.duty_cycle = 0
51 #TODO: Turn off the LED

Hint:

Sun Simulation Algorithm
You are adding a digital input peripheral to this project. It is one you are familiar with.

Set up the white LED on PORT 2.

Define LED_ON and LED_OFF constants for the LED.

The LED is a digital output peripheral.
It will not use PWM for this mission.

Define the function that turns on/off the LED.

led.value = val

Turn on the LED to simulate the sun.

The LED will stay on during program execution.
You will physically move it closer and farther from the light sensor.

Read the light sensor and print() its values to the Console Panel.

Observe the readings when the "sun" is overhead.
Make a note of the high light threshold.

Turn off the LED when the program ends.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 138 of 214

Define a function to turn on/off the LED.

Turn ON the LED in the main program.

print() the light sensor reading to the Console Panel.

How much of this can you do without checking the CodeTrek?

Goals:

Define the constants LED_ON and LED_OFF.

Define the function set_led(val).

Assign led.value as val.

Call set_led() at least twice.

Print light_sensor.value.

Tools Found: Constants, Functions, Print Function

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10 LOW_LIGHT = 12000 # Threshold ambient light for night
11 LED_ON = True
12 LED_OFF = False
13
14
15 # Set up peripherals
16 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
17 light_sensor = exp.analog_in(exp.PORT1)
18 led = exp.digital_out(exp.PORT2)
19
20 # Set the servo by calculating the duty_cycle
21 def set_servo(percent):
22 return CYCLE * percent // 100
23
24 def set_led(val):
25 led.value = val
26
27 # Main program
28 panels.duty_cycle = set_servo(FORWARD)
29 state = 'morning'
30 set_led(LED_ON)
31
32 while True:
33 print("Light sensor: ", light_sensor.value)
34
35 if state == 'morning':
36 if light_sensor.value < LOW_LIGHT:
37 state = 'night'
38 panels.duty_cycle = set_servo(BACKWARD)
39 elif state == 'afternoon':
40 panels.duty_cycle = set_servo(CENTER)
41 elif state == 'night':
42 if light_sensor.value > LOW_LIGHT:
43 state = 'morning'
44 panels.duty_cycle = set_servo(FORWARD)
45 # debounce
46 sleep(0.5)
47
48 if buttons.was_pressed(BTN_A):

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 139 of 214

49 break
50
51 # Stop the servo and LED
52 panels.duty_cycle = 0
53 set_led(LED_OFF)

Objective 8 - Automatic Sun Tracking

Add the final state to your code!

'afternoon' is the final state for the solar tracker

The transition to the 'afternoon' state should occur when the sun is at its brightest.

You should now have a value for the HIGH_LIGHT threshold, from your observations during the last Objective.
Define a constant for HIGH_LIGHT using your high value readings.
During my testing, a high threshold is more than 30000.

The finite-state machine looks like this:

The transition from 'morning' to 'afternoon' should utilize the new HIGH_LIGHT threshold.
And the transition from 'afternoon' to 'night' will utilize the LOW_LIGHT threshold.

Check the 'Trek!

Follow the CodeTrek to complete the finite-state machine.

Use the constants LOW_LIGHT and HIGH_LIGHT with the light sensor readings to transition from one state to the next state.

Physical Interaction

1. Place the white LED next to the light sensor to transition from 'morning' to 'afternoon'
2. Cover the light sensor to transition from 'afternoon' to 'night'
3. Uncover the light sensor to transition from 'night' to 'morning'

And... REPEAT

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10 LOW_LIGHT = 12000 # Threshold ambient light for night-time
11 HIGH_LIGHT = 30000 # Threshold ambient light for day-time

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 140 of 214

12 LED_ON = True
13 LED_OFF = False
14
15 # Set up peripherals
16 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
17 light_sensor = exp.analog_in(exp.PORT1)
18 led = exp.digital_out(exp.PORT2)
19
20 # Set the servo by calculating the duty_cycle
21 def set_servo(percent):
22 return CYCLE * percent // 100
23
24 def set_led(val):
25 led.value = val
26
27 # Main program
28 panels.duty_cycle = set_servo(FORWARD)
29 state = 'morning'
30 set_led(LED_ON)
31
32 while True:
33 print("Light sensor: ", light_sensor.value)

34
35 if state == 'morning':
36 if light_sensor.value > HIGH_LIGHT:
37 state = 'afternoon'
38 panels.duty_cycle = set_servo(CENTER)

39 elif state == 'afternoon':
40 if light_sensor.value < LOW_LIGHT:
41 state = 'night'
42 panels.duty_cycle = set_servo(BACKWARD)

43 elif state == 'night':
44 if light_sensor.value > LOW_LIGHT:
45 state = 'morning'
46 panels.duty_cycle = set_servo(FORWARD)

47
48 sleep(0.5)
49
50 if buttons.was_pressed(BTN_A):
51 break
52
53 # Stop the servo and LED

Define HIGH_LIGHT with the threshold for bright sunlight.

Use the value from your observations for this constant.

The print() statement was used for testing.

You can keep it in the code or delete it.

Modify the code for the 'morning' state to transition to 'afternoon'.

Use the HIGH_LIGHT threshold.
If True change the state and set the panels to CENTER.

Modify the code for the 'afternoon' state to transition to 'night'.

Use the LOW_LIGHT threshold.
If True change the state and set the panels to BACKWARD.

The code for the 'night' state does not need to change.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 141 of 214

54 panels.duty_cycle = 0
55 set_led(LED_OFF)

Hint:

Sunlight Simulation
Can you think of other ways to simulate sunlight?

The LED can use PWM and the potentiometer readings to change from dim to bright.

You can use a timer or switch to turn on/off the LED.

A servo can spin the LED around the light sensor.

With the peripherals kit and your imagination, there are many possibilities!

Goals:

Define the constant HIGH_LIGHT.

Assign the variable state at least four times.

Assign the variable state as 'afternoon'.

Tools Found: State, Constants, Variables

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Constants for peripherals
 5 PERIOD = 20 # Milliseconds / Hz
 6 CYCLE = 2**16 // PERIOD
 7 FORWARD = 50 # Percent for 45 degree angle clockwise
 8 CENTER = 75 # Percent for 0 degree angle (centered)
 9 BACKWARD = 100 # Percent for 45 degree angle counterclockwise
10 LOW_LIGHT = 12000 # Threshold ambient light for night-time
11 HIGH_LIGHT = 30000 # Threshold ambient light for day-time
12 LED_ON = True
13 LED_OFF = False
14
15 # Set up peripherals
16 panels = exp.pwm_out(exp.PORT0, frequency=PERIOD) # 180 servo
17 light_sensor = exp.analog_in(exp.PORT1)
18 led = exp.digital_out(exp.PORT2)
19
20 # Set the servo by calculating the duty_cycle
21 def set_servo(percent):
22 return CYCLE * percent // 100
23
24 def set_led(val):
25 led.value = val
26
27 # Main program
28 panels.duty_cycle = set_servo(FORWARD)
29 state = 'morning'
30 set_led(LED_ON)
31
32 while True:
33 # Optional - can be deleted
34 print("Light sensor: ", light_sensor.value)
35
36 if state == 'morning':
37 if light_sensor.value > HIGH_LIGHT:
38 state = 'afternoon'
39 panels.duty_cycle = set_servo(CENTER)
40 elif state == 'afternoon':
41 if light_sensor.value < LOW_LIGHT:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 142 of 214

42 state = 'night'
43 panels.duty_cycle = set_servo(BACKWARD)
44 elif state == 'night':
45 if light_sensor.value > LOW_LIGHT:
46 state = 'morning'
47 panels.duty_cycle = set_servo(FORWARD)
48
49 sleep(0.5)
50
51 if buttons.was_pressed(BTN_A):
52 break
53
54 # Stop the servo and LED
55 panels.duty_cycle = 0
56 set_led(LED_OFF)

Mission 7 Complete

You've completed project Solar Tracking!
You now know how to use positional servos and apply a more complex state machine.

The ship's power supply has been boosted over 30% by rotating the solar panels!

You have created enough power to get the crew to Mars!!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 143 of 214

Mission 8 - Prepare Lander!
This project provides a tutorial on the object sensor and ties in multiple different peripherals!

Mission Briefing:

The crew has survived their long trip to Mars.

Now they need to enter the atmosphere and land safely on the surface.

Your task is to incorporate a few systems to prepare the lander, sense the
surface, and provide notifications!

You can make the crew's first experience on Mars a great one with a
smooth landing sequence!

Project: Prepare Lander will guide you through preparing the lander for
atmospheric entry and landing.

Project Goals:

Learn about the Object Sensor
Tie in together a servo and the NeoPixels in a landing system
Create a simple state machine
Ease the crew's entry sequence for landing on Mars!!

Note:

You will need extra materials for this mission:

A small phillips screwdriver
A small ruler or measuring device

Objective 1 - Plan of Attack

Project: Prepare Lander will require many different components!

You should start by taking a look at the different phases (or states) of the landing on Mars:

The first phase - "Init" phase

In this phase the lander will be about to enter the Mars Atmosphere
The crew will be notified with a yellow light
The landing gear will be completely retracted into the craft

The second phase - "Prepare" phase

This phase will be entered when the craft detects the ground
The crew will be notified with a red light
The landing gear will be extended and ready for landing

The third phase - "Landed" phase

This will be entered when the craft touches down on the surface
The crew will be notified with a green light

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 144 of 214

Project: Prepare Lander

The Mars lander will be able to:

Display the landing state to the crew with lights.
Sense the surface and extend the landing gear.
Detect touchdown on the planet.

Create a New File!

Use the File → New File menu to create a new file called PrepareLander.

Goal:

Create a new file named PrepareLander.

Solution:

N/A

Objective 2 - Crew Display!

You will start by setting up a display for the crew.

The NeoPixel ring will make an excellent display.

You can use the multi-color display to show different Lander States!

Connect Peripheral

Connect the 8 RGB NeoPixel ring to PORT0 on your CodeX. Use the three loose
wires provided in the peripheral kit.

The back side of the NeoPixel ring has three labels:

G or ground is connected to the BLACK wire.
V or voltage is connected to the ORANGE wire.
DI or data input is connected to the YELLOW wire.

On the CodeX, the YELLOW wire goes to S, the ORANGE in the
middle, and the BLACK to the G. The colors of your wires may be
different. That is okay. Just connect the wires to the correct pins.

Disconnect all other peripherals from the CodeX.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 145 of 214

Add code to light up the NeoPixels. To prepare the display for the crew, you will need to:

Set up the NeoPixel ring.
Define constants for the colors YELLOW, RED, and GREEN.
Define a function that lights all pixels a color.

Check the 'Trek!

Follow the CodeTrek to prepare the display for the crew.

Run It!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 #TODO: Define RGB_YELLOW, RGB_RED, and RGB_GREEN

 6
 7 # Set up the peripherals
 8 power.enable_periph_vcc(True)
 9 np = neopixel.NeoPixel(exp.PORT0, 8)

10
11 # Set all pixels to one color
12 def set_lighting(rgb_color):
13 for pixel in range(8):
14 np[pixel] = rgb_color

15
16 # Main program
17 set_lighting(RGB_YELLOW)
18 sleep(3)
19 set_lighting((0, 0 , 0))

Define constants for the colors the ring will use:

RGB_YELLOW = (20, 20, 0)
RGB_RED = (20, 0, 0)
RGB_GREEN = (0, 20, 0)

Set up the NeoPixel ring on PORT0.

It has 8 pixels on the ring.
Manually turn on power to the ring.

Define a function for turning on all pixels the same color.

This is the same function you defined in HatchLock, but
with a descriptive name for this mission.

Test your code and make sure it works.

Set all pixels to RGB_YELLOW.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 146 of 214

Hints:

NeoPixel Ring Code
The code for setting up the NeoPixel ring is very similar to the beginning of the program for HatchLock. You may want to review
your code.

Additional Power
REMINDER: The NeoPixel ring requires a lot of power, so you will manually turn the power on. Use this code to provide a boost
of power:

power.enable_periph_vcc(True)

Goals:

Call power.enable_periph_vcc(True).

Define the constants RGB_YELLOW, RGB_RED, and RGB_GREEN.

Define the function set_lighting(rgb_color).

Call set_lighting() at least twice.

Tools Found: Constants, Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8
 9 # Set up the peripherals
10 power.enable_periph_vcc(True)
11 np = neopixel.NeoPixel(exp.PORT0, 8)
12
13 # Set all pixels to one color
14 def set_lighting(rgb_color):
15 for pixel in range(8):
16 np[pixel] = rgb_color
17
18 # Main program
19 set_lighting(RGB_YELLOW)
20 sleep(3)
21 set_lighting((0, 0 , 0))

Objective 3 - Connect the Object Sensor!

To enter Phase II, the lander craft needs to detect the ground.

Use the object sensor to detect the ground.

The object sensor is a peripheral that:

Emits an IR (Infrared) light.
Detects the reflected IR energy with a phototransistor.
Outputs a digital True (HIGH) for detected or False (LOW) for not detected.
Check the emoji_objects Hints for more details about the object sensor.

Connect Peripheral

After a delay, turn all pixels OFF.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 147 of 214

Connect the object sensor to PORT1 on your CodeX.

Set the ideal distance for the object sensor!

The object sensor contains a small blue potentiometer on the top side.

This has a white phillips (cross) screw inside.
Adjusting the screw will make the sensor more or less "sensitive".
Adjusting the object sensor:

Full Clockwise = Not Sensitive Enough
Full Counterclockwise = Too Sensitive

The goal is to adjust to the correct distance.

The ideal distance for the object sensor is 2.5 millimeters.
This distance was determined by the chip manufacturer.

Physical Interaction

1. With a small phillips screwdriver, adjust the screw halfway between full
clockwise and full counterclockwise position.

2. Hold the sensor above a white surface (with the blue potentiometer facing
up and the IR sensor facing down).

3. Move the sensor slowly up and down. Observe the red LED next to the
potentiometer. It turns ON when no object is detected and OFF when an
object is detected.

4. Hold the sensor at 2.5 millimeters.
5. Adjust the phillips screw until the red LED turns OFF precisely at the

threshold of 2.5 millimeters.

Add some code to read the digital output of the object sensor!

Your algorithm for reading the object sensor looks like this:

Set up the object sensor.
Define a constant for GROUND_DETECTED.
Use a while True: loop to read the object sensor continuously.
if the object sensor detects the ground, turn the NeoPixels GREEN.
Otherwise turn the NeoPixels YELLOW.

Check the 'Trek!

Follow the CodeTrek to use the object sensor to control the display for the
crew.

Physical Interaction

Run the code.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 148 of 214

Start with the object sensor higher than 2.5 millimeters.
Lower the object sensor until ground is detected.
The NeoPixel ring should turn from YELLOW to GREEN.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RBG_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True

 9
10 # Set up the peripherals
11 power.enable_periph_vcc(True)
12 np = neopixel.NeoPixel(exp.PORT0, 8)
13 ground_sensor = exp.digital_in(exp.PORT1)

14
15 # Set all pixels to one color
16 def set_lighting(rgb_color):
17 for pixel in range(8):
18 np[pixel] = rgb_color
19
20 # Main program
21 while True:
22 if ground_sensor.value == GROUND_DETECTED:
23 set_lighting(RGB_GREEN)
24 else:
25 set_lighting(RGB_YELLOW)

26

Hint:

Object Sensors
The Object Sensor is sometimes called a Hunt Sensor. In this project you will call it a Ground Sensor.

It can be used to:

Detect nearby obstacles.
Distinguish between black and white colors (Line Sensing).

Count pulses as an object passes by (Wheel Encoders).

Goals:

Set up the object sensor by assigning the variable ground_sensor as the output of exp.digital_in(exp.PORT1).

Define the constant GROUND_DETECTED.

Use an if statement with the condition ground_sensor.value == GROUND_DETECTED.

Define a constant for the object sensor.

Set up the object sensor on PORT1.

Name the variable ground_sensor.
Tell the CodeX a digital input peripheral is connected on PORT1.

Remember: ground_sensor.value is True when it detects something.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 149 of 214

Call set_lighting(RGB_GREEN) and set_lighting(RGB_YELLOW).

Tools Found: CPU and Peripherals, Variables, Constants, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True
 9
10 # Set up the peripherals
11 power.enable_periph_vcc(True)
12 np = neopixel.NeoPixel(exp.PORT0, 8)
13 ground_sensor = exp.digital_in(exp.PORT1)
14
15 # Set all pixels to one color
16 def set_lighting(rgb_color):
17 for pixel in range(8):
18 np[pixel] = rgb_color
19
20 # Main program
21 while True:
22 if ground_sensor.value == GROUND_DETECTED:
23 set_lighting(RGB_GREEN)
24 else:
25 set_lighting(RGB_YELLOW)
26
27

Objective 4 - Pull Up!

Why was the object sensor not providing the right value?

When the object sensor was very close to the white surface, you probably noticed that it
stopped detecting and the red LED turned on.

The object sensor has a very weak boolean HIGH value.

It is necessary to give the input a little boost.
You can boost the level by changing the default setting of pull when you set up the
sensor.

Concept

What is a pull on an input pin?

The pull determines the default value of a pin when nothing is connected.
Pull values are very weak and can be overcome by applying an external HIGH or LOW voltage.

The pull of a pin can be set to:

Pull.UP = weak pull toward 3 Volts (HIGH Logic)
Pull.DOWN = weak pull toward 0 Volts (LOW Logic)
None = the pin can drift between high and low

The pins on the CodeX default to None.

Check the 'Trek!

Follow the CodeTrek to set the pull of the object sensor.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 150 of 214

Physical Interaction

Run the code. Move the object sensor closer and further from a surface.

Does the sensor continue to detect an object at very close range?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True
 9
10 # Set up the peripherals
11 power.enable_periph_vcc(True)
12 np = neopixel.NeoPixel(exp.PORT0, 8)
13 ground_sensor = exp.digital_in(exp.PORT1, pull=digitalio.Pull.UP)

14
15 # Set all pixels to one color
16 def set_lighting(rgb_color):
17 for pixel in range(8):
18 np[pixel] = rgb_color
19
20 # Main program
21 while True:
22 if ground_sensor.value == GROUND_DETECTED:
23 set_lighting(RGB_GREEN)
24 else:
25 set_lighting(RGB_YELLOW)

Hint:

Sensor Pull
The downside to using a pull is the external source has to be able to overcome the strength of the pull on that pin.

Most devices that require a pull up can easily overcome that by dragging the voltage down to 0.

NOTE the buttons in the peripheral kit all default to None and do not require setting a value on the CodeX.

Other buttons or sensors may require some external (or internal) pull direction.

Many peripherals in the real-world require you to use pulls on your input pins!

Goal:

Set up the pull for the object sensor by assigning the variable ground_sensor as the output of
exp.digital_in(exp.PORT1, pull=digitalio.Pull.UP).

Tools Found: bool, Pins, Variables

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)

Set the pull for the object sensor to digitalio.Pull.UP.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 151 of 214

 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True
 9
10 # Set up the peripherals
11 power.enable_periph_vcc(True)
12 np = neopixel.NeoPixel(exp.PORT0, 8)
13 ground_sensor = exp.digital_in(exp.PORT1, pull=digitalio.Pull.UP)
14
15 # Set all pixels to one color
16 def set_lighting(rgb_color):
17 for pixel in range(8):
18 np[pixel] = rgb_color
19
20 # Main program
21 while True:
22 if ground_sensor.value == GROUND_DETECTED:
23 set_lighting(RGB_GREEN)
24 else:
25 set_lighting(RGB_YELLOW)
26

Quiz 1 - Check Your Understanding: Object Sensors

Question 1: What type of peripheral is the object sensor?

done Digital input

close Digital output

close Analog input

close Analog output

Question 2: What values does the object sensor return?

done True for detected, False for not detected

close False for detected, True for not detected

close 1 for detected, 0 for not detected

close An integer between 0-65535

Question 3: What is one thing the object sensor CANNOT detect?

done Motion 10 feet away

close Close obstacles

close A black line on a white background

close Pulses as an object passes by

Question 4: What is the ideal distance to adjust the object sensor to?

done 2.5 mm

close 5 mm

close 2.5 cm

close 1 inch

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 152 of 214

Question 5: How can you boost the input of an object sensor?

done Change the default pull to Pull.UP

close Change the default pull to Pull.DOWN

close Change the default pull to None

close Use the potentiometer.

Objective 5 - Lander States

Time to apply a finite-state machine to the lander!

The lander states should mimic the phases of landing almost identically.

This state diagram is pretty simple... Why would I want to add states to my system? Wouldn't that just make the code more complex?

Say as a remix idea you wanted to:

Use a button to abort the landing and transition from the 'prepare' state back to the 'init' state?
Add a fourth state before the 'init' state that required some crew action to transition?

In this project, you will utilize states to avoid extra processor effort!

Let's write an algorithm from the diagram.

Create a lander_state variable and initialize it to 'init'.
Set the lighting for the 'init' state to RGB_YELLOW.
Perform sensor checks for the appropriate sensors in your while loop based on your current state.
Set the lighting for the 'prepare' state to RGB_RED.
For now, just immediately transition from the 'prepare' state to the 'landed' state.

You will add a touchdown sensor later!
Set the lighting for the 'landed' state to RGB_GREEN.

Check the 'Trek!

Follow the CodeTrek to set up the finite-state machine for landing the craft.

Physical Interaction

Run the code.

Start with the object sensor higher than a surface.
Gradually move the object sensor close to the surface.
Your display should go from 'prepare' to 'landed', or yellow lights to green lights.

CodeTrek:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 153 of 214

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True
 9
10 # Set up the peripherals
11 power.enable_periph_vcc(True)
12 np = neopixel.NeoPixel(exp.PORT0, 8)
13 ground_sensor = exp.digital_in(exp.PORT1)
14
15 # Set all pixels to one color
16 def set_lighting(rgb_color):
17 for pixel in range(8):
18 np[pixel] = rgb_color
19
20 # Main program
21 # Initialize the first state and let object sensor settle
22 lander_state = 'init'
23 set_lighting(RGB_YELLOW)
24 sleep(1)

25
26 while True:
27 if lander_state == 'init':
28 if ground_sensor.value == GROUND_DETECTED:
29 lander_state = 'prepare'
30 set_lighting(RGB_RED)

31 elif lander_state == 'prepare':
32 lander_state = 'landed'
33 set_lighting(RGB_GREEN)

34 elif lander_state == 'landed':
35 break

36

Hint:

Initialize the finite-state machine.

Set lander_state to 'init'.
Set the lights to RGB_YELLOW.
Add a short delay so the object sensor can settle (debounce).

First phase of the finite-state machine.

If the state is 'init', then check the object sensor.
If GROUND_DETECTED:

update the state variable to the next phase.
set the lights to RGB_RED.

Second phase of the finite-state machine.

If the state is 'prepare':
update the state variable to the next phase.
set the lights to RGB_GREEN.

NOTE: This phase will be modified.

Third phase of the finite-state machine.

If the state is 'landed', then end the program.
Successful landing!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 154 of 214

Checking Sensors
You will only check the sensors that are meaningful in your current state.

For example:

You will only check a touchdown sensor when you are in the 'prepare' state.

The touchdown sensor would not have any meaning in the 'init' state.

If you had 100 touchdown sensors:

You wouldn't want to be checking those sensors constantly on your entire trip from Earth.

Goals:

Assign the variable lander_state as 'init', 'prepare', and 'landed'.

Call set_lighting(RGB_RED).

Use an if statement with the condition lander_state == 'init'.

Use an elif with the condition lander_state == 'landed'.

Tools Found: State, Loops, Variables, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True
 9
10 # Set up the peripherals
11 power.enable_periph_vcc(True)
12 np = neopixel.NeoPixel(exp.PORT0, 8)
13 ground_sensor = exp.digital_in(exp.PORT1)
14
15 # Set all pixels to one color
16 def set_lighting(rgb_color):
17 for pixel in range(8):
18 np[pixel] = rgb_color
19
20 # Main program
21 # Initialize the first state and let object sensor settle
22 lander_state = 'init'
23 set_lighting(RGB_YELLOW)
24 sleep(1)
25
26 while True:
27 if lander_state == 'init':
28 if ground_sensor.value == GROUND_DETECTED:
29 lander_state = 'prepare'
30 set_lighting(RGB_RED)
31 elif lander_state == 'prepare':
32 lander_state = 'landed'
33 set_lighting(RGB_GREEN)
34 elif lander_state == 'landed':
35 break
36

Objective 6 - Sense Touchdown!

The Lander needs to know when it hits the surface!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 155 of 214

You can use the microswitch as your touchdown sensor!

The microswitch could be placed in hundreds of locations to detect impact with the
surface
In a safety critical application you might want multiple different microswitches!

Connect Peripheral

Connect the microswitch to PORT2 on your CodeX.

You will read the microswitch in the second phase to detect a landing.

Remember, the microswitch is False when pressed.
So, define a constant with this value.

Now modify the second phase to read the switch and prepare for landing!

Check the 'Trek!

Follow the CodeTrek to complete the second phase of the finite-state machine.

Physical Interaction: Try It!

Run the code. Transition between the three states:

1. Hold the object sensor well above the surface to stay in the 'init' state.
2. Move the object sensor toward the surface until it senses the ground to enter the 'prepare' state.
3. Press the microswitch to the surface to sense touchdown and transition to the 'landed' state!!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True # Object sensor
 9 TOUCHDOWN_DETECTED = False # Microswitch

Define a constant for the microswitch.

Since the microswitch is False when pressed,
the value of the constant is False.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 156 of 214

10
11 # Set up the peripherals
12 power.enable_periph_vcc(True)
13 np = neopixel.NeoPixel(exp.PORT0, 8)
14 ground_sensor = exp.digital_in(exp.PORT1) # Object sensor
15 touchdown_sensor = exp.digital_in(exp.PORT2) # Microswitch

16
17 # Set all pixels to one color
18 def set_lighting(rgb_color):
19 for pixel in range(8):
20 np[pixel] = rgb_color
21
22 # Main program
23 # Initialize the first state and let object sensor settle
24 lander_state = 'init'
25 set_lighting(RGB_YELLOW)
26 sleep(1)
27
28 while True:
29 if lander_state == 'init':
30 # Read the object sensor
31 if ground_sensor.value == GROUND_DETECTED:
32 lander_state = 'prepare'
33 set_lighting(RGB_RED)
34 elif lander_state == 'prepare':
35 # Read the microswitch
36 if touchdown_sensor.value == TOUCHDOWN_DETECTED:
37 lander_state = 'landed'
38 set_lighting(RGB_GREEN)

39 elif lander_state == 'landed':
40 break

Hint:

Turn Off the Lights!
The power to the peripherals keeps the LEDs on, even after the program ends.

If you want to turn the LEDs off, you can add code AFTER the while True: loop.

turn off lights
sleep(3)
set_lighting((0, 0, 0))

Remember: This code is AFTER the loop, so watch your indenting!

Goals:

Set up the microswitch by assigning the variable touchdown_sensor as the output of exp.digital_in(exp.PORT2).

Define the constant TOUCHDOWN_DETECTED.

Use an if statement with the condition touchdown_sensor.value == TOUCHDOWN_DETECTED.

Tools Found: Variables, Constants, bool

Set up the microswitch on PORT2.

Define the variable as touchdown_sensor.
Tell the CodeX a digital input peripheral is connected on PORT2.

Update the second phase to read the microswitch.

If TOUCHDOWN_DETECTED:
update the state variable.
set the lights to RGB_GREEN.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 157 of 214

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True # Object sensor
 9 TOUCHDOWN_DETECTED = False # Microswitch
10
11 # Set up the peripherals
12 power.enable_periph_vcc(True)
13 np = neopixel.NeoPixel(exp.PORT0, 8)
14 ground_sensor = exp.digital_in(exp.PORT1) # Object sensor
15 touchdown_sensor = exp.digital_in(exp.PORT2) # Microswitch
16
17 # Set all pixels to one color
18 def set_lighting(rgb_color):
19 for pixel in range(8):
20 np[pixel] = rgb_color
21
22 # Main program
23 # Initialize the first state and let object sensor settle
24 lander_state = 'init'
25 set_lighting(RGB_YELLOW)
26 sleep(1)
27
28 while True:
29 if lander_state == 'init':
30 # Read the object sensor
31 if ground_sensor.value == GROUND_DETECTED:
32 lander_state = 'prepare'
33 set_lighting(RGB_RED)
34 elif lander_state == 'prepare':
35 # Read the microswitch
36 if touchdown_sensor.value == TOUCHDOWN_DETECTED:
37 lander_state = 'landed'
38 set_lighting(RGB_GREEN)
39 elif lander_state == 'landed':
40 break

Objective 7 - Set up the Landing Gear!

Connect the landing gear to your lander!

The positional (180) servo is the right tool for moving a landing gear.

You want the landing gear to:

Move to a known position (either extended or retracted)
Stay in position once it has moved

For a bit of fun, you could tape a picture of landing gear to the positional servo so that you
can see them move!!

Connect Peripheral

Connect the 180 servo to PORT3 on your CodeX.

Attach one servo-horn to the servo.

NOTE: Your servo will have orange, red, and brown wires.

The ORANGE wire is inserted into the S
The BROWN wire is inserted into the G

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 158 of 214

The landing gear should start in the retracted position when the lander is the 'init' state.

It should only be extended when you enter the 'prepare' state.
This will keep the gear from dragging through the atmosphere on reentry!

Define a function to set the servo to the desired position.

You will use many of the constants defined in Project: Solar Tracking.
The function set_servo() is the same one in Project: Solar Tracking

Check the 'Trek!

Follow the CodeTrek to set up the servo and use it to control the landing gear.

Physical Interaction: Try It!

Run the code. Transition between the three states:

1. Hold the object sensor well above the surface to stay in the 'init' state.
2. Move the object sensor toward the surface until it senses the ground to enter the 'prepare' state.
3. Press the microswitch to the surface to sense touchdown and transition to the 'landed' state!!

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True # Object sensor
 9 TOUCHDOWN_DETECTED = False # Microswitch
10 PERIOD = 20 # Milliseconds / Hz
11 CYCLE = 2**16 // PERIOD

12 EXTENDED = 50 # Percent for servo 45 degrees clockwise
13 RETRACTED = 100 # Percent for servo 45 degrees counterclockwise

Define constants for the duty_cycle.

Constants PERIOD and CYCLE are used by the servo.
Use the same values as previous missions.

Define constants for the percents needed to rotate the landing gear.

45 degrees clockwise for EXTENDED.
45 degrees counterclockwise for RETRACTED.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 159 of 214

14
15 # Set up the peripherals
16 power.enable_periph_vcc(True)
17 np = neopixel.NeoPixel(exp.PORT0, 8)
18 ground_sensor = exp.digital_in(exp.PORT1, pull=digitalio.Pull.UP)
19 touchdown_sensor = exp.digital_in(exp.PORT2)
20 landing_gear = exp.pwm_out(exp.PORT3, frequency=PERIOD) # 180 servo

21
22 # Set all pixels to one color
23 def set_lighting(rgb_color):
24 for pixel in range(8):
25 np[pixel] = rgb_color
26
27 # Set the servo by calculating the duty_cycle
28 def set_servo(percent):
29 return CYCLE * percent // 100

30
31 # Main program
32 # Initialize the first state and let object sensor settle
33 lander_state = 'init'
34 set_lighting(RGB_YELLOW)
35 # Retract landing gear
36 landing_gear.duty_cycle = set_servo(RETRACTED)

37 sleep(1)
38
39 while True:
40 if lander_state == 'init':
41 # Read object sensor and extend landing gear
42 if ground_sensor.value == GROUND_DETECTED:
43 lander_state = 'prepare'
44 set_lighting(RGB_RED)
45 landing_gear.duty_cycle = set_servo(FORWARD)

46 elif lander_state == 'prepare':
47 # Read microswitch
48 if touchdown_sensor.value == TOUCHDOWN_DETECTED:
49 lander_state = 'landed'
50 set_lighting(RGB_GREEN)
51 elif lander_state == 'landed':
52 break

Hint:

Familiar Code
This mission uses the 180 servo, just like Project Solar Tracking.

These are the same percents from the chart in Solar Tracking.

Set up the servo to use PWM on PORT3.

Define the variable as landing_gear.
Use the constant PERIOD.

Define the function set_servo() to calculate the duty_cycle.

Use one parameter percent.
This is the same function used in Mission Life Support and Solar Tracking.

This function will be used to rotate the landing gear.

Initialize the landing gear to be retracted.

Extend the landing gear to prepare for landing.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 160 of 214

The code for this mission will use much of the same code as the previous mission.

You may want to open Solar Tracking and review the code.

You can even copy and paste some of the code.

Goals:

Define the constants PERIOD, CYCLE, EXTENDED, and RETRACTED.

Define the function set_servo(percent).

Assign landing_gear.duty_cycle at least twice.

Call set_servo() at least twice.

Tools Found: Servos, State, Constants, Functions

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 RGB_YELLOW = (20, 20, 0)
 6 RGB_RED = (20, 0, 0)
 7 RGB_GREEN = (0, 20, 0)
 8 GROUND_DETECTED = True # Object sensor
 9 TOUCHDOWN_DETECTED = False # Microswitch
10 PERIOD = 20 # Milliseconds / Hz
11 CYCLE = 2**16 // PERIOD
12 EXTENDED = 50 # Percent for servo 45 degrees clockwise
13 RETRACTED = 100 # Percent for servo 45 degrees counterclockwise
14
15 # Set up the peripherals
16 power.enable_periph_vcc(True)
17 np = neopixel.NeoPixel(exp.PORT0, 8)
18 ground_sensor = exp.digital_in(exp.PORT1, pull=digitalio.Pull.UP)
19 touchdown_sensor = exp.digital_in(exp.PORT2)
20 landing_gear = exp.pwm_out(exp.PORT3, frequency=PERIOD)
21
22 # Set all pixels to one color
23 def set_lighting(rgb_color):
24 for pixel in range(8):
25 np[pixel] = rgb_color
26
27 # Set the servo by calculating the duty_cycle
28 def set_servo(percent):
29 return CYCLE * percent // 100
30
31 # Main program
32 # Initialize the first state and let object sensor settle
33 lander_state = 'init'
34 set_lighting(RGB_YELLOW)
35 # Retract landing gear
36 landing_gear.duty_cycle = set_servo(RETRACTED)
37 sleep(1)
38
39 while True:
40 if lander_state == 'init':
41 # Read object sensor and extend landing gear
42 if ground_sensor.value == GROUND_DETECTED:
43 lander_state = 'prepare'
44 set_lighting(RGB_RED)
45 landing_gear.duty_cycle = set_servo(EXTENDED)
46 elif lander_state == 'prepare':
47 # Read microswitch
48 if touchdown_sensor.value == TOUCHDOWN_DETECTED:
49 lander_state = 'landed'
50 set_lighting(RGB_GREEN)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 161 of 214

51 elif lander_state == 'landed':
52 break

Mission 8 Complete

You've completed project Prepare Lander!

You can sense nearby objects and determine the state of the landing craft.

The lander is prepared for entry into the atmosphere! The crew is extremely pleased with the new lander's ground sensing system.

Congratulations! You have finished preparations to send the crew to Mars!!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 162 of 214

Mission 9 - Automatic Garden!
This project shows you how to connect and use a relay to operate devices like the water pump!

Mission Briefing:

The crew will need to be able to generate their own food when they reach their destination.

They will require some automation to assist them in production!

Build a system to sense soil moisture levels and automatically water a garden.

Project: Automatic Garden will guide you through automating food production on Mars.

Project Goals:

Learn about relays
Add a soil moisture sensor to assist with automation
Understand small pumps and their operation
Learn how to prime a pump and what that means
Automate food production for busy life in space!!

Note:

You will need additional materials for this mission:

Two cups size 16-oz or larger
Water
Some soil
A small flat-head screwdriver

Objective 1 - Automatic Garden Begin!

Time to build the automated gardening system for the colony on Mars!

Your system will be complete with:

A soil moisture detector and a water pump to perfectly balance the moisture in the soil.

But....you don't want to stand around and turn the pump on and off. There has to be a better way ... an automatic way. You look
through your peripherals kit and ... YES ... You can use a relay to regulate the pump.

Why would you need to use a relay in your circuit?

A relay is just an electrically operated switch!

It allows a relatively low power circuit to switch high powered loads.
It could allow a single controller to switch multiple different loads at the same time.
It could even allow a DC logic circuit to switch AC Power!

The biggest benefit of a relay is isolation!

The DC logic circuit can be completely isolated from the load circuit
The relay will be used to provide external power to the water pump.

Connect Peripheral

Connect the 3V relay to PORT0 on your CodeX.

Disconnect all other peripherals from the CodeX.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 163 of 214

Create a New File!

Use the File → New File menu to create a new file called AutomaticGarden.

Check the 'Trek!

Follow the CodeTrek to set up the relay.

CodeTrek:

1 from codex import *
2 from time import sleep
3
4 # Set up peripherals
5 power.enable_periph_vcc(True)

6 relay = exp.digital_out(exp.PORT0)

Hint:

Relay Example
How about an example of using a relay?

Say you were trying to turn on a bedroom lamp using a battery operated device.

The lamp requires AC (Alternating Current) power from a wall outlet.
The battery logic controller would be completely destroyed if you hooked it into AC power.

Both circuits need complete isolation from each other!

Take a look at the diagram to visualize the lamp example.

The relay requires a lot of power, so you will
manually turn the power on.

Remember to import the libraries you will need.

Set up the relay on PORT0.

Tell the CodeX a digital output peripheral is connected on PORT0.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 164 of 214

Goals:

Create a new file named AutomaticGarden.

Call power.enable_periph_vcc(True).

Set up the 3V relay by assigning the variable relay as the output of exp.digital_out(exp.PORT0).

Tools Found: Variables

Solution:

1 from codex import *
2 from time import sleep
3
4 # Set up peripherals
5 power.enable_periph_vcc(True)
6 relay = exp.digital_out(exp.PORT0)

Objective 2 - Connect the Water Pump!

Time to connect the water pump to the relay.

Mars doesn't have any wall outlets, so the water pump needs an external power source.

A two-battery pack should work!
But ... you don't have one.
The CodeX has power, either through the USB or its battery pack.
Use the CodeX as an external power source.

Check the emoji_objects Hints for more details about power sources.

Physical Interaction: Water Pump

Connect the water pump to the 3V relay and a CodeX as shown in the image below.

You will use PORT0 and PORT1 on your CodeX.
Connect the 3V relay to PORT0 on your CodeX - use a 3-wire connector.
Connect the RED wire from the pump to the 3V relay NO terminal.
Connect the BLACK wire from the pump to the PORT1 GND pin on your CodeX.
Using a DuPont jumper wire from the kit, connect the PORT1 V (middle) pin on your CodeX to the 3V relay Center
terminal.

NOTES:

You will need a small flat-head screwdriver to loosen and tighten the relay terminals.
Do not tighten the terminals to the point where the ends of the wire break or bend.
Tighten just enough to maintain a positive electrical connection!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 165 of 214

The relay has three different screw terminals:

NC (Normally Closed)
Power Input
NO (Normally Open)

When connecting the relay you should:

Always connect the power that you are switching to the center screw terminal.
For this mission, the CodeX V pin will be connected to the center screw terminal.
Use the NO screw terminal for any other connection because it will close the circuit when the relay is True.
For this mission, the pump's red wire will be connected to the NO screw terminal.

Check the emoji_objects Hints for more details about the relay terminals.

Check the 'Trek!

Follow the CodeTrek to turn on and off the pump.

Run It!

Run the code.

Does the pump turn on for 2 seconds and then turn off?

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Set up peripherals
 5 power.enable_periph_vcc(True)
 6 relay = exp.digital_out(exp.PORT0)
 7
 8 relay.value = True
 9 sleep(2)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 166 of 214

10
11 relay.value = False
12 sleep(2)

Hints:

Power Source FAQs
Do I really need the relay?

Yes, to ensure proper operation you will need a relay for the water pump.

How much power does the pump need?

The optimal power supply for the pump would be 3 AA or 3 AAA Batteries.

The pump normal operating voltage is 3 - 4.5 Volts DC.

A single AA or AAA battery produces:

~ 1.5 V when it is new

As low as 1.35 V when it is used

Relay terminals
When connecting the relay you should:

Always connect the power that you are switching to the center screw terminal. The other two terminals (NC and NO) are
optional:

NO (Normally Open) = current will flow from the center screw terminal into the NO terminal only when the logic input to
the relay is True (HIGH).

NC (Normally Closed) = current will flow from the center screw terminal into the NC terminal only when the logic input to
the relay is False (LOW).

NO is the most common usage of a relay.

This is because it is more common to want the peripheral to be powered with a HIGH signal and off with a LOW signal.

Many relays only offer the NO terminal!

And yes... you can connect to both terminals at the same time if you want to!

Goals:

Import sleep from time.

Assign relay.value at least twice.

Call sleep(2) at least twice.

Tools Found: import

Solution:

 1 from codex import *
 2 from time import sleep

Turn on the pump by setting the relay value property to True.

You are using the NO terminal, so the relay's True property closes the circuit.
Delay for 2 seconds.

Turn off the pump by setting the relay value property to False.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 167 of 214

 3
 4 # Set up peripherals
 5 power.enable_periph_vcc(True)
 6 relay = exp.digital_out(exp.PORT0)
 7
 8 relay.value = True
 9 sleep(2)
10
11 relay.value = False
12 sleep(2)

Objective 3 - Pump it Up!

Add code to operate the water pump!

Many pumps must be primed before operation. Priming is the process of removing air from the pump lines.

In other words, you need to fill the lines with water before the pump can operate properly.

The first thing you will need is your water source.

A cup or container of water is perfect.

You will also need a place to pump water to.

A second empty cup will work!

The next step is to submerge the pump in the water as shown here:

It's OK! The pump is designed to be submersible.
Try to keep the bottom of the pump above the bottom of the outflow line.

Now it is time to prime! The easiest way to prime the water pump is:

Get the pump running and then squeeze water through the line!
If necessary, you can use your fingers to massage the water through the line.

This looks like a good place to write a function.

Check the 'Trek!

Follow the CodeTrek to define a function for priming the pump.

Physical Interaction: Try it!

Press BTN_A on the CodeX to prime the pump.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 168 of 214

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 PUMP_ON = True
 6 PUMP_OFF = False

 7
 8 # Set up peripherals
 9 power.enable_periph_vcc(True)
10 relay = exp.digital_out(exp.PORT0)
11
12 def prime_pump():
13 relay.value = PUMP_ON
14 sleep(5)
15 relay.value = PUMP_OFF

16
17 while True:
18 if buttons.was_pressed(BTN_A):
19 prime_pump()

Hint:

The Importance of Priming
The majority of pump problems occur because the pump was not primed first.

Gases tend to expand when pushed and block the line.

The pump will not generate enough pressure to push water through the gas.

Some pumps can even overheat if they are not properly primed!

Goals:

Define the constants PUMP_ON and PUMP_OFF.

Define the function prime_pump().

Call prime_pump().

Use an if statement with the condition buttons.was_pressed(BTN_A).

Tools Found: Functions, Constants, bool

Define constants for the relay to use: PUMP_ON and PUMP_OFF.

Just like you did for other peripherals, defining constants will give
meaning to your code.

Define the function prime_pump() that will turn the pump on for a
period of time.

Set the relay value property to PUMP_ON.
Then delay for a set amount of time.
Then turn the pump off - it is primed!

Use buttons.was_pressed() to call prime_pump().

The pump may need to be primed on occasion. Using a button press lets
you prime the pump on demand.
Use a while True: infinite loop.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 169 of 214

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 PUMP_ON = True
 6 PUMP_OFF = False
 7
 8 # Set up peripherals
 9 power.enable_periph_vcc(True)
10 relay = exp.digital_out(exp.PORT0)
11
12 def prime_pump():
13 relay.value = PUMP_ON
14 sleep(5)
15 relay.value = PUMP_OFF
16
17 while True:
18 if buttons.was_pressed(BTN_A):
19 prime_pump()

Objective 4 - Detect Soil Moisture

It is time to detect the moisture in the soil!

The soil moisture sensor is an analog input sensor.

It measures the conductivity of the soil between the two sensor tines.

One tine outputs a very small DC current.
The second tine reads the current as an input.
It will return a value between 0-65535.
Like other analog input devices, the soil moisture sensor will use the resistor voltage divider
to limit the ADC input.

More water in the soil = More conductivity = Less resistance

This means as moisture increases the input values will also increase!

Connect Peripheral

Connect the divider to PORT2 and the soil moisture sensor to the divider on your CodeX.

Check the 'Trek!

Follow the CodeTrek to read the soil moisture sensor and display the output on the Console Panel.

Physical Interaction: Try it!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 170 of 214

Place the soil moisture sensor into some soil, and place the end of the water line in the cup with soil.

Run the code. Prime the pump if needed.

Open the Console Panel and observe the soil moisture values.
You should see a new soil moisture sensor value every 5 seconds.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 PUMP_ON = True
 6 PUMP_OFF = False
 7 TIME_ON = 1 # Seconds
 8 TIME_OFF = 4 # Seconds

 9
10 # Set up peripherals
11 power.enable_periph_vcc(True)
12 relay = exp.digital_out(exp.PORT0)
13 soil_moisture = exp.analog_in(exp.PORT2)

14
15 def prime_pump():
16 relay.value = PUMP_ON
17 sleep(5)
18 relay.value = PUMP_OFF
19
20 while True:
21 if buttons.was_pressed(BTN_A):
22 prime_pump()
23
24 print("Moisture Val: ", soil_moisture.value)

25
26 relay.value = PUMP_ON
27 sleep(TIME_ON)
28 relay.value = PUMP_OFF
29 sleep(TIME_OFF)

Hint:

Time ON and Time OFF

Define constants for the pump timer: TIME_ON and TIME_OFF.

Decide how long you want the pump to stay on (in seconds),
and how long it should stay off before turning on again.
The values are small for testing purposes.

Set up the soil moisture sensor on PORT2.

Tell the CodeX an analog input peripheral is connected on PORT2.

Read the moisture sensor and display the output on the Console Panel.

Open the Console Panel when you run the program.

While testing the soil moisture sensor, turn on and off the
pump automatically.

Use the constants defined for the pump timer.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 171 of 214

You can define constants for the pump timing.
Constants give your code meaning.
It also makes it easier to change the values.

During this mission, you will define constants for how much time the pump is ON and OFF.

You can easily adjust these values for times that work for you and your soil.

Goals:

Define the constants TIME_ON and TIME_OFF.

Set up the soil moisture sensor by assigning the variable soil_moisture as the output of exp.analog_in(exp.PORT2).

Print soil_moisture.value.

Call sleep(TIME_ON) and sleep(TIME_OFF).

Tools Found: Analog to Digital Conversion, Constants, Variables, Print Function

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 PUMP_ON = True
 6 PUMP_OFF = False
 7 TIME_ON = 1 # Seconds
 8 TIME_OFF = 4 # Seconds
 9
10 # Set up peripherals
11 power.enable_periph_vcc(True)
12 relay = exp.digital_out(exp.PORT0)
13 soil_moisture = exp.analog_in(exp.PORT2)
14
15 def prime_pump():
16 relay.value = PUMP_ON
17 sleep(5)
18 relay.value = PUMP_OFF
19
20 while True:
21 if buttons.was_pressed(BTN_A):
22 prime_pump()
23
24 print("Moisture Val: ", soil_moisture.value)
25
26 relay.value = PUMP_ON
27 sleep(TIME_ON)
28 relay.value = PUMP_OFF
29 sleep(TIME_OFF)

Quiz 1 - Check Your Understanding: Relays and Moisture Sensors

Question 1: What is the biggest benefit of using a relay?

done Circuit isolation

close An extra switch

close More available power

close An extra port for peripherals

Question 2: What type of peripheral is a relay?

done Digital output

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 172 of 214

close Digital input

close Analog output

close Analog input

Question 3: What relay screw terminal is the water pump connected to?

close Center

close NC

done NO

close Any of them will work

Question 4: What type of peripheral is the soil moisture sensor?

done Analog input

close Analog output

close Digital input

close Digital output

Question 5: What values are returned by a moisture sensor reading?

done Integers between 0-65535

close True or False

close Integers between 0-10

close PUMP_ON or PUMP_OFF

Objective 5 - Fine Tune Automation

Add a Low Moisture Threshold to Start the Pump Timer

For testing, you set the pump to run an on/off cycle. But the garden may not always need
constant watering.

Add a LOW_MOISTURE_THRESHOLD constant to your code.

This will be used to trigger the pump ON for a TIME_ON delay.
Look at the moisture sensor readings on the Console Panel.
Decide on a value that would mean dry soil that needs water.
During my testing, dry soil was at a reading below 10000.

Then add an if condition in the while loop to check the reading against your new threshold.

Now you just need to fine tune your constants a little!

During testing, TIME_ON and TIME_OFF were given small values.

Decide how long the pump should run to nourish the garden.
This is still a simulation, so the number will remain small but can be more than 1 second.
Decide how long you want the water to stay off in between readings.
This will give the soil a little time to absorb water before taking another reading!
You can adjust both constant values as needed.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 173 of 214

Check the 'Trek!

Follow the CodeTrek to fine tune the automatic watering system.

Physical Interaction: Try it!

Run the code.

Test that the threshold is working by pulling the sensor out of the soil for a reading.
This will create a high resistance through the air and return a value well below LOW_MOISTURE_THRESHOLD.

CodeTrek:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 PUMP_ON = True
 6 PUMP_OFF = False
 7 TIME_ON = 1 # Seconds
 8 TIME_OFF = 4 # Seconds
 9 LOW_MOISTURE_THRESHOLD = 10000 # Soil moisture threshold for dry soil

10
11 # Set up peripherals
12 power.enable_periph_vcc(True)
13 relay = exp.digital_out(exp.PORT0)
14 soil_moisture = exp.analog_in(exp.PORT2)
15
16 def prime_pump():
17 relay.value = PUMP_ON
18 sleep(5)
19 relay.value = PUMP_OFF
20
21 while True:
22 if buttons.was_pressed(BTN_A):
23 prime_pump()
24
25 print("Moisture Val: ", soil_moisture.value)
26
27 if soil_moisture.value < LOW_MOISTURE_THRESHOLD:

28 relay.value = PUMP_ON
29 sleep(TIME_ON)
30 relay.value = PUMP_OFF

31
32 sleep(TIME_OFF)

Define a constant for dry soil.

LOW_MOISTURE_THRESHOLD will be a value below the normal sensor reading.

Compare the current moisture sensor reading to LOW_MOISTURE_THRESHOLD.

If the soil is dry, the condition is True and it will trigger the pump to turn ON.

When the condition is True:

Turn the pump ON.
Use the TIME_ON delay.
Then turn the pump OFF.

Delay for awhile before reading the soil moisture sensor again.

This gives the soil time to absorb the water.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 174 of 214

Hint:

How much water?
You need to determine the appropriate soil moisture level for your plant.

All plants are different!

You can adjust the moisture level by tweaking the LOW_MOISTURE_THRESHOLD.

Try some different values and see what your plant needs!

You can also adjust the TIME_ON and TIME_OFF constants.

Goals:

Define the constant LOW_MOISTURE_THRESHOLD.

Use an if statment with the condition soil_moisture.value < LOW_MOISTURE_THRESHOLD.

In the if statement from goal 2:

Assign relay.value.

Call sleep(TIME_ON).

Tools Found: Constants, bool

Solution:

 1 from codex import *
 2 from time import sleep
 3
 4 # Define constants for the peripherals
 5 PUMP_ON = True
 6 PUMP_OFF = False
 7 TIME_ON = 1 # Seconds
 8 TIME_OFF = 4 # Seconds
 9 LOW_MOISTURE_THRESHOLD = 10000 # Soil moisture threshold for dry soil
10
11 # Set up peripherals
12 power.enable_periph_vcc(True)
13 relay = exp.digital_out(exp.PORT0)
14 soil_moisture = exp.analog_in(exp.PORT2)
15
16 def prime_pump():
17 relay.value = PUMP_ON
18 sleep(5)
19 relay.value = PUMP_OFF
20
21 while True:
22 if buttons.was_pressed(BTN_A):
23 prime_pump()
24
25 print("Moisture Val: ", soil_moisture.value)
26
27 if soil_moisture.value < LOW_MOISTURE_THRESHOLD:
28 relay.value = PUMP_ON
29 sleep(TIME_ON)
30 relay.value = PUMP_OFF
31
32 sleep(TIME_OFF)

Mission 9 Complete

You've completed project Automatic Garden!

Also, you don't want to check the soil too frequently.
NOTE: This delay is NOT part of the if statement. Watch your indenting!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 175 of 214

You have detected soil moisture and incorporated a water pump.

The tools that you created will be the core of the fully automated food production centers on Mars!

The crew will be able to grow their own food as they begin life outside of Earth!!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 176 of 214

Mission 10 - Exploring the Surface!
This project introduces external peripherals that can be added to the CodeX using a breadboard!

Mission Briefing:

Now that your Mars habitat is set up, it's time to fire up the Martian
Rover to explore the surface. But all around the landing zone, there
are large boulders that could damage the Rover.

Project: Exploring the Surface will guide you through keeping the
Rover safe by adding a distance sensing system.

You will need to detect the distance to objects and alert the crew when
the Rover is approaching or very close to a harmful object.

Project Goals:

Connect a breadboard to the CodeX
Connect external peripherals to the breadboard
Use a sonar to detect distance to an object
Convert raw data to a distance in centimeters
Create a warning system for the Rover!

Objective 1 - Hard Knocks

Hard Knocks - and a Discovery!

Upon driving the Rover out of the landing zone, it immediately crashed into a boulder which was very difficult to see visually, blending
in to the sandy surface texture. The damage was easy to fix this time ... but scary!

While inspecting the Rover, the astronauts discovered the remains of a long-
lost spacecraft which crashed on the surface a decade ago! A few parts could
be salvaged:

a breadboard
a red and an amber LED
two 100 Ohm resistors
an HC-SR04 ultrasonic distance sensor
10 jumper wires

You decide to use the spare parts to craft a distance detection warning
system for the Rover. You can:

use the ultrasonic distance sensor to detect the distance to an object,
use the amber LED as a warning indicator when the Rover is
approaching an object,
and use the red LED as an alert indicator when the Rover is very close
to a harmful object.

All the parts can be connected on the breadboard, which is then mounted on
the Rover.

Check the emoji_objects Hints to learn about breadboards.

Physical Interaction: Breadboard

Disconnect all peripherals from the CodeX.

Connect the breadboard to the expansion ports on your CodeX.

The expansion ports are located on the front of the CodeX, below the buttons.
You do not want to cover up the display screen, so turn the breadboard upside down.

The two expansion ports on the CodeX have five pin slots each.

The breadboard has 10 pins on each side.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 177 of 214

Use only five pins on each side of the breadboard.
The other five pins on each side will not connect to anything.
Line up the pins with the slots and gently press until firmly in place.

Create a New File!

Use the File → New File menu to create a new file called ExploreSurface.

Hints:

Breadboard?
The term "breadboard" comes from the early days of electronics, when people would literally drive nails or screws into wooden
boards on which they cut bread in order to build circuits.

Today a breadboard is a rectangular plastic board with a bunch of tiny holes in it. The breadboard for this project is a mini
breadboard, one of the smallest breadboards available.

A Breadboard and Peripherals
The tiny holes on the breadboard let you easily insert electronic components to build a circuit.

The components can be external peripherals like LEDs, sensors, buttons, and speakers.

The connections are not permanent, so it is easy to remove components and reuse the breadboard for a different project.

The CodeX will supply power to the mounted breadboard, which can then power the added components.

Jumper Wires
Jumper wires are used to make connections on a breadboard. Their ends are easy to push into the breadboard holes. The
wires come in varying colors. It doesn't matter which colors you use, but color coding the project helps you stay organized and
keep track of what you are connecting.

Goal:

After connecting the breadboard, create a new file named ExploreSurface.

Solution:

N/A

Objective 2 - Going the Distance!

Add the Ultrasonic Sensor.

Getting the HC-SR04 ultrasonic distance sensor is a great find! It can detect if there is an object and measure the distance to the
object.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 178 of 214

Concept: Ultrasonic Sensor

The ultrasonic sensor uses sonar to determine the distance to an object. It follows these steps:

1. The ultrasound transmitter (trig pin) emits a high-frequency sound (40 kHz).
2. The sound travels through the air.
3. If an object is in its path, the sound bounces back.
4. The ultrasound receiver (echo pin) receives the reflected sound (echo).

The sensor then returns the time it took to give and receive the signal. The time between the transmission and reception of
the signal allows us to calculate the distance to an object. This is possible because we know the sound’s velocity in the air.

You will use the Distance=Rate*Time formula to calculate the distance.

Does the ultrasonic sensor work on Mars? Yes, but mind the speed of sound! For now, test the device using the speed of
sound on Earth.

Check the emoji_objects Hints to see the specs of the ultrasonic sensor.

Let's first get the ultrasonic sensor connected and see what the raw data looks like.

Physical Interaction: Ultrasonic Sensor

Insert the ultrasonic sensor into the breadboard.

In order to keep a clear path in front of the sensor, use the center holes on the front row of the breadboard.
The sensor will face away from the CodeX and breadboard.

Now the peripheral needs power, a ground, and input/output connections.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 179 of 214

Connect the terminals of the ultrasonic sensor to connection points on the breadboard.

Check the emoji_objects Hints for more information about breadboards and jumper wires.

Physical Interaction: Jumper Wires

When connecting the peripheral to the breadboard, only use the connection points that are connected to the CodeX.

Connect:

Sensor's GND pin to the breadboard's GND pin hole
Sensor's VCC pin to the breadboard's 3.3V pin hole
Sensor's Echo pin to the breadboard's GPIO0 pin hole
Sensor's Trig pin to the breadboard's GPIO1 pin hole

NOTE: You can use any pin hole in the terminal strip that the sensor's pin is in.

Write some code to get data from the ultrasonic sensor.

You will need to import a new library.
The trigger is a digital output device, but the echo will receive a pulse (input).

import pulseio
Set up peripherals
echo = pulseio.PulseIn(exp.GPIO0)
trigger = exp.digital_out(exp.GPIO1)

Check the 'Trek!

Follow the CodeTrek to:

import modules
set up the peripherals
write a function for reading data from the sensor
use the function in the main program to display the data

That is a lot of code!

Time to give it a try.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 180 of 214

Run It!

Open the console panel and run the code.
Put an object in front of the sensor.
Move the object closer and farther away from the sensor.
Observe the values printed for each distance.

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio

 4
 5 # Set up peripherals
 6 echo = pulseio.PulseIn(exp.GPIO0)
 7 trigger = exp.digital_out(exp.GPIO1)

 8
 9 # Use sonar to find the distance to an object
10 def object_distance():

11 # Turn on and off signal, clear the echo
12 trigger.value = True
13 trigger.value = False
14 echo.clear()

15 # Wait for the echo signal
16 while not echo:
17 pass
18 return echo[0]

19
20 # Main program
21 while True:

Import the modules (libraries) you need.

This includes the new library pulseio.

Set up the trigger and echo as peripherals.

The echo is a pulse input device.
The trigger is a digital output device.

Create a function for the ultrasonic sensor.

It will use sonar to return the distance to an object.

Start the function by turning on and off the trigger.

This will transmit a high-frequency sound.
You also need to clear the echo pin so it is ready to receive the newly
transmitted signal.

Use a while not echo: loop to wait for the echo signal.

The loop will not do anything while waiting.
When an echo is received, return the value to the function call.

Start the main program with a while True: loop.

You will continuously read the sensor in the loop.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 181 of 214

22 echo_signal = object_distance()
23 print(echo_signal)
24 time.sleep(2)

Hints:

HC-SR04 Ultrasonic Sensor
This sensor reads from 2 cm to 400 cm (0.8 inch to 157 inch)

It has an accuracy of 0.3cm (0.1 inches)

Resolution: 0.3 cm

Measuring Angle: 30 degrees

Breadboards
A breadboard holds your parts steady and has internal wiring to make connections super fast.

Each column of holes is a terminal strip.

Any parts plugged into the same terminal strip are electrically connected together.

The terminal strips on either side of the center divider are not connected together.

Jumper Wires
Use jumper wires to electronically connect the terminals of a peripheral to power, ground, or input/output connection points on
the breadboard.

The color of the jumper wire does not matter.

However, color coding your project helps you stay organized.

One end of the jumper wire plugs into a hole in the terminal strip.

The other end of the jumper wire plugs into a labeled connection point on the side of the breadboard.

Breadboard Setup
The setup of the ultrasonic sensor may look like this:

In the main program:

Call the sensor's function and assign the returned echo value to a variable.
Display the value in the console log.
Use a short delay so the data display is not overwhelming.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 182 of 214

Goals:

Set up the echo receiver by assigning the variable echo as the output of pulseio.PulseIn(exp.GPIO0).

Set up the trigger transmitter by assigning the variable trigger as the output of exp.digital_out(exp.GPIO1).

Define the function object_distance().

At the end of object_distance(), return echo[0].

Assign echo_signal the return value of object_distance().

Print echo_signal in the console panel.

Tools Found: Functions, Variables, Print Function, Timing

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Set up peripherals
 6 echo = pulseio.PulseIn(exp.GPIO0)
 7 trigger = exp.digital_out(exp.GPIO1)
 8
 9 # Use sonar to find the distance to an object
10 def object_distance():
11 # Turn on and off signal, clear the echo
12 trigger.value = True
13 trigger.value = False
14 echo.clear()
15 # Wait for the echo signal
16 while not echo:
17 pass
18 return echo[0]
19
20 # Main program
21 while True:
22 echo_signal = object_distance()
23 print(echo_signal)
24 time.sleep(2)

Objective 3 - Convert to Centimeters

Look at the raw data.

The ultrasonic sensor returns the time between the transmission and reception of the signal in microseconds. The time itself isn't that
useful, but you can use it to calculate the distance from the sensor to the object.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 183 of 214

Concept: Converting time to distance

The basic formula distance = rate * time can be used to convert the echo signal (raw data time) to a distance measurement.
Since the test Rover CodeX is pretty small you will convert to centimeters.

When using the conversion formula:

Use half the time; you only want the return time, not the total time.
The rate is the speed of sound.
The speed of sound will be different on Mars than it is on Earth, so use a constant for this value. Then it will be easy
to change later.

Check the emoji_objects Hints to learn more about the speed of sound.

Add a function to convert the echo signal's raw time to centimeters.

Run It!

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second

 7
 8 # Set up peripherals
 9 echo = pulseio.PulseIn(exp.GPIO0)
10 trigger = exp.digital_out(exp.GPIO1)
11
12 # Convert echo time from microseconds to seconds
13 def convert_to_centimeters(echo_signal):

14 echo_time = echo_signal / 1000000

15 # Calculate using distance = rate * time
16 return SOUND_SPEED * (echo_time / 2)

17
18 # Use sonar to find the distance to an object
19 def object_distance():

Define a constant SOUND_SPEED for the rate.

This is the speed of sound on Earth.
The speed is 343 m/sec, or 34300 cm/sec.
The value can be changed for the speed of sound on Mars.

Define a function convert_to_centimeters() that will take the echo_signal
returned by the ultrasonic sensor as a parameter.

Then use the formula: distance = rate * time

First convert the echo_signal parameter from microseconds to seconds.

Use the distance = rate * time formula to calculate the
distance in centimeters.

Use half the time; you only need the return time.
Return the distance in centimeters to the function call.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 184 of 214

20 # Turn on and off signal, clear the echo
21 trigger.value = True
22 trigger.value = False
23 echo.clear()
24 # Wait for the echo signal
25 while not echo:
26 pass
27 # convert raw data (time) to centimeters
28 distance_cm = convert_to_centimeters(echo[0])

29 return distance_cm

30
31 # Main program
32 while True:
33 distance_cm = object_distance()
34 print(distance_cm, "centimeters")

35 time.sleep(2)

Hints:

Speed of Sound (on Earth)
The speed of sound in the air at 20 degrees C (68 degrees F) = 343m/s

You want to convert to centimeters, so multiply 343 * 100

1 meter = 100 centimeters

The time returned by the sensor is in microseconds.

You will need to divide the time by 1000000 to convert it to seconds.

1 second = 1000000 microseconds

Sounds on Mars
On Mars, the atmosphere is entirely different than on Earth. Sounds on Mars will be a little quieter and more muffled than what
you hear on Earth. Also, you'll wait slightly longer to hear sounds after they are transmitted.

But, the biggest change to audio will be high-pitch sounds. Some sounds, like whistles, bells or bird songs, will almost be
inaudible on Mars.

Goals:

Define a constant named SOUND_SPEED.

Define the function convert_to_centimeters(echo_signal).

Assign the variable distance_cm as the return of convert_to_centimeters().

Print distance_cm in the console panel.

Tools Found: Constants, Functions, Print Function, Variables

Assign a value to distance_cm in the object_distance() function
by calling the convert_to_centimeters() function.

Use the ultrasonic sensor's return value echo[0] as the parameter.

Return the distance distance_cm to the main program.

Modify the main program to:

Assign a value to distance_cm instead of echo_signal.
Print distance_cm instead of echo_signal.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 185 of 214

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7
 8 # Set up peripherals
 9 echo = pulseio.PulseIn(exp.GPIO0)
10 trigger = exp.digital_out(exp.GPIO1)
11
12 # Convert echo time from microseconds to seconds
13 def convert_to_centimeters(echo_signal):
14 echo_time = echo_signal / 1000000
15 # Calculate using distance = rate * time
16 return SOUND_SPEED * (echo_time / 2)
17
18 # Use sonar to find the distance to an object
19 def object_distance():
20 # Turn on and off signal, clear the echo
21 trigger.value = True
22 trigger.value = False
23 echo.clear()
24 # Wait for the echo signal
25 while not echo:
26 pass
27 # convert raw data (time) to centimeters
28 distance_cm = convert_to_centimeters(echo[0])
29 return distance_cm
30
31 # Main program
32 while True:
33 distance_cm = object_distance()
34 print(distance_cm, "centimeters")
35 time.sleep(2)

Objective 4 - Time Out!

What if an object isn't close by?

The ultrasonic sensor waits to receive a return signal. But what if there isn't an object to
bounce the signal off of? A return signal won't be sent.

The object_distance() function has a loop that waits for a return signal, so if one isn't sent,
that could be a problem.

You reflect on the programming techniques you used earlier during these missions. And
then it comes to you!

Include a time out feature in the loop so that it won't keep waiting.
Use the CodeX's internal Timer to keep track of the time the loop waits.

From the moment you connect the CodeX, the Timer is always running.
If the loop waits too long, break the loop and return a value that indicates no
object is close by.

Type in the Code

Define a constant for the wait time:

WAIT_TIME = 100 # Milliseconds

In the object_distance() function, change:

 # Wait for the echo signal
 while not echo:
 pass

to:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 186 of 214

 # Return time for echo or time out if no object detected
 echo_start = time.ticks_ms()
 while not echo:
 if time.ticks_ms() > WAIT_TIME + echo_start:
 return -1

The return -1 will break the loop and return the value -1 for the time.

Wait a minute (or 100 milliseconds)!

A negative return time!? That will convert to a negative distance.

You can use that negative distance in your code to mean "no object detected".

Check the 'Trek!

Follow the CodeTrek to modify the main program by adding a condition for a negative distance.

Test your code again.

Run It!

Open the console panel and run the code.
Put an object in front of the sensor.
Point the sensor away from all objects.
Make sure the correct statement is displayed.

Does the console log show "No object detected" when the distance is far away?

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds

 8
 9 # Set up peripherals
10 echo = pulseio.PulseIn(exp.GPIO0)
11 trigger = exp.digital_out(exp.GPIO1)
12
13 # Convert echo time from microseconds to seconds
14 def convert_to_centimeters(echo_signal):
15 echo_time = echo_signal / 1000000
16 # Calculate using distance = rate * time
17 return (echo_time / 2) * SOUND_SPEED
18
19 # Use sonar to find the distance to an object
20 def object_distance():
21 # Turn on and off signal, clear the echo
22 trigger.value = True
23 trigger.value = False
24 echo.clear()
25 # Return time for echo or time out if no object detected
26 echo_start = time.ticks_ms()

Define a constant WAIT_TIME for the loop.

Use the milliseconds time measurement.

Define a variable for the starting time.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 187 of 214

27 while not echo:
28 if time.ticks_ms() > WAIT_TIME + echo_start:
29 return -1

30 distance_cm = convert_to_centimeters(echo[0])
31 return distance_cm
32
33 # Main program
34 while True:
35 distance_cm = object_distance()
36
37 if distance_cm < 0:
38 print("No object detected")
39 else:
40 print("Object detected:", distance_cm, "centimeters")

41
42 time.sleep_ms(WAIT_TIME)

Hints:

The CodeX Timer
You used the Timer in Project 3: Conserve Energy. You may want to open the mission and review Objectives 6 & 7.

For this project, you are using the Timer in a similar yet different way.

Go to the toolbox and learn even more about the time module.

Timer Similarities

A starting time is needed.

A pre-determined WAIT time was defined.

The starting and WAIT times are added together for the ending time.

The current time is compared to the ending time.

Timer Differences

For Conserve Energy, the Timer was used as a condition for the while loop.

The loop will continue until the ending time is reached.

For Exploring the Surface, the Timer is used as a condition for an if statement.

The loop constantly checks the time and stops if the ending time is reached.
The loop will also stop when the looping condition not echo is False.

Use the current clock time.

Modify the body of the loop to constantly check if the current time
is more than WAIT_TIME + echo_start.

If time is up, return -1 and break the loop.
The loop will automatically stop if an object is detected.

Add an if statement to the main program that checks for a negative distance.

If negative, no object is detected.
Otherwise, print the distance to the object.

Now that your code has been tested, and the Rover is ready to go,
you will want to read the sensor more frequently.

Change the time from seconds to milliseconds.
Use WAIT_TIME for the delay.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 188 of 214

Goals:

Define the constant WAIT_TIME in milliseconds.

Use an if statement with the condition time.ticks_ms() > WAIT_TIME + echo_start.

Use an if statement with the condition distance_cm < 0.

Call time.sleep_ms(WAIT_TIME).

Tools Found: Parameters, Arguments, and Returns, Constants, bool, Variables

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8
 9 # Set up peripherals
10 echo = pulseio.PulseIn(exp.GPIO0)
11 trigger = exp.digital_out(exp.GPIO1)
12
13 # Convert echo time from microseconds to seconds
14 def convert_to_centimeters(echo_signal):
15 echo_time = echo_signal / 1000000
16 # Calculate using distance = rate * time
17 return (echo_time / 2) * SOUND_SPEED
18
19 # Use sonar to find the distance to an object
20 def object_distance():
21 # Turn on and off signal, clear the echo
22 trigger.value = True
23 trigger.value = False
24 echo.clear()
25 # Return time for echo or time out if no object detected
26 echo_start = time.ticks_ms()
27 while not echo:
28 if time.ticks_ms() > WAIT_TIME + echo_start:
29 return -1
30 distance_cm = convert_to_centimeters(echo[0])
31 return distance_cm
32
33 # Main program
34 while True:
35 distance_cm = object_distance()
36
37 if distance_cm < 0:
38 print("No object detected")
39 else:
40 print("Object detected:", distance_cm, "centimeters")
41
42 time.sleep_ms(WAIT_TIME)

Quiz 1 - Check Your Understanding: Sonar Sensor

Question 1: The VCC terminal of the ultrasonic sensor is connected to what connection point on the breadboard?

done 3.3V

close GND

close GPIO0

close GPIO1

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 189 of 214

Question 2: What data is transmitted by the ultrasonic sensor?

done High-frequency sound

close Transmission time

close Distance to the object

close Raw time data

Question 3: What information is returned by the ultrasonic sensor?

done Transmission and receiving time in microseconds

close Total time in milliseconds

close Distance to the object

close The sound wave

Question 4: What is the formula for finding the distance to an object when using a sonar reading?

done distance = SOUND_SPEED * echo_time / 2

close distance = SOUND_SPEED * echo_time

close distance = SOUND_SPEED / echo_time

close distance = SOUND_SPEED * 2 / echo_time

Objective 5 - A Little Resistance!

Time to create a warning system.

Now that you can detect the distance from the Rover to an object, you can create a distance detection warning system for the Rover.

Use the two LEDs you found from the old spacecraft for warning signals.

You have two LEDs, but you don't know what color they are.
And they look the same!

Let's get them connected and figure it out.

Concept: LEDs and Resistors

LEDs don't respond well when voltage fluctuates, and minor voltage increases
can lead to significant increases in current. This can damage the LED.

A resistor is usually placed in series with the LED to limit the amount of current
that passes through it.

A resistor doesn't have a "front" or "back".
It can be connected in any order.
The resistor is connected to power and the LED.
The LED is connected to the resistor and ground.

Each LED needs its own resistor.

An LED has a positive lead and a negative lead.
It must be connected in the correct order.
The positive lead is longer and is connected to the resistor.
The negative lead is shorter and is connected to GND.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 190 of 214

Check the emoji_objects Hints to learn more about LEDs and resistors.

Run It!

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8 # TODO: Define LED_ON
 9 # TODO: Define LED_OFF

10
11 # Set up peripherals
12 echo = pulseio.PulseIn(exp.GPIO0)
13 trigger = exp.digital_out(exp.GPIO1)
14 red_led = exp.digital_out(exp.GPIO2)

15
16 # Convert echo time from microseconds to seconds
17 def convert_to_centimeters(echo_signal):
18 echo_time = echo_signal / 1000000
19 # Calculate using distance = rate * time
20 return (echo_time / 2) * SOUND_SPEED
21
22 # Use sonar to find the distance to an object
23 def object_distance():
24 # Turn on and off signal, clear the echo
25 trigger.value = True
26 trigger.value = False
27 echo.clear()
28 # Return time for echo or time out if no object detected
29 echo_start = time.ticks_ms()
30 while not echo:
31 if time.ticks_ms() > WAIT_TIME + echo_start:
32 return -1
33 distance_cm = convert_to_centimeters(echo[0])
34 return distance_cm
35
36 # Main program
37
38 # Test code for the red LED
39 red_led.value = LED_ON
40 time.sleep(2)
41 red_led.value = LED_OFF

Define constants for LED_ON and LED_OFF.

Set up the LED as a digital output.

This variable is for the red LED.
In the next Objective you will set up another digital output for the amber LED.

Use this test code to turn on and off the LED.

This will let you know everything is connected properly.
You can also see the color of the LED.
Try each LED, and leave in the one that is red.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 191 of 214

42
43 while True:
44 distance_cm = object_distance()
45
46 if distance_cm < 0:
47 print("No object detected")
48 else:
49 print("Object detected:", distance_cm, "centimeters")
50
51 time.sleep_ms(WAIT_TIME)

Hints:

Resistors and Ohms
Resistors are electronic components that limit the flow of electrons through a circuit. This is like a narrow pipe that restricts the
flow of water.

A resistor is measured in Ohms.

The Ohm is a unit of resistance between two points in a conductor.

It is named after Georg Ohm, a Bavarian scientist who studied electricity.

Resistors come in many different shapes, sizes and values. Most have colored bands printed on them that are used to indicate
resistance value and tolerance.

Breadboard Input/Output
It may look like the breadboard only has two input/output ports that are connected to the CodeX: GPIO0 and GPIO1. But the
breadboard actually has two more: MOSI and MISO. These are used for input/output as well, and are programmed as GPIO2
and GPIO3.

LED Test Connections
After setting up the simple circuit with a resistor and LED, your breadboard may look like this:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 192 of 214

Goals:

Assign the constants LED_ON = True and LED_OFF = False.

Set up the red LED by assigning the variable red_led as the output of exp.digital_out(exp.GPIO2).

Turn on the LED by assigning red_led.value = LED_ON.

Turn off the LED by assigning red_led.value = LED_OFF.

Tools Found: Constants

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8 LED_ON = True
 9 LED_OFF = False
10
11 # Set up peripherals
12 echo = pulseio.PulseIn(exp.GPIO0)
13 trigger = exp.digital_out(exp.GPIO1)
14 red_led = exp.digital_out(exp.GPIO2)
15
16 # Convert echo time from microseconds to seconds
17 def convert_to_centimeters(echo_signal):
18 echo_time = echo_signal / 1000000
19 # Calculate using distance = rate * time
20 return (echo_time / 2) * SOUND_SPEED
21
22 # Use sonar to find the distance to an object
23 def object_distance():
24 # Turn on and off signal, clear the echo

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 193 of 214

25 trigger.value = True
26 trigger.value = False
27 echo.clear()
28 # Return time for echo or time out if no object detected
29 echo_start = time.ticks_ms()
30 while not echo:
31 if time.ticks_ms() > WAIT_TIME + echo_start:
32 return -1
33 distance_cm = convert_to_centimeters(echo[0])
34 return distance_cm
35
36 # Main program
37
38 # Test code for the red LED
39 red_led.value = LED_ON
40 time.sleep(2)
41 red_led.value = LED_OFF
42
43 while True:
44 distance_cm = object_distance()
45
46 if distance_cm < 0:
47 print("No object detected")
48 else:
49 print("Object detected:", distance_cm, "centimeters")
50
51 time.sleep_ms(WAIT_TIME)
52

Objective 6 - Light It Up!

Two LEDs are better than one!

You have the red LED connected, so follow the same steps to connect the amber LED.

It will need its own resistor and another jumper wire.
It will connect to a different input/output connection point.

Physical Interaction: LED and Resistor

Keep all the connections for the ultrasonic sensor and red LED!

Create another simple circuit with one resistor, the amber LED and a new jumper wire.

Connect a new jumper wire to MISO and a new terminal strip.
See the blue rectangle in the diagram.

Connect one end of the resistor to the jumper wire (blue) terminal strip.
Connect the other resistor end to a different terminal strip.

See the second white rectangle in the diagram.
Connect the amber LED positive (long) lead to the same (white) terminal strip
Connect the amber LED negative (short) lead to the GND (black) terminal strip

Make sure all wires are pushed into the breadbox for a solid connection.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 194 of 214

Write some test code to make sure both LEDs are set up properly.

Check the 'Trek!

Follow the CodeTrek to test each LED.

Set up the amber LED as a digital output.
Turn on and off the amber LED.

Test your code to check the LEDs.

Run It!

Run the code. The red LED should light up for two seconds, followed by the amber LED for two seconds.

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8 LED_ON = True
 9 LED_OFF = False
10
11 # Set up peripherals
12 echo = pulseio.PulseIn(exp.GPIO0)
13 trigger = exp.digital_out(exp.GPIO1)
14 red_led = exp.digital_out(exp.GPIO2)
15 # TODO: set up the amber_led as a digital output

16
17 # Convert echo time from microseconds to seconds
18 def convert_to_centimeters(echo_signal):
19 echo_time = echo_signal / 1000000
20 # Calculate using distance = rate * time
21 return (echo_time / 2) * SOUND_SPEED
22
23 # Use sonar to find the distance to an object
24 def object_distance():
25 # Turn on and off signal, clear the echo
26 trigger.value = True
27 trigger.value = False
28 echo.clear()
29 # Return time for echo or time out if no object detected
30 echo_start = time.ticks_ms()
31 while not echo:
32 if time.ticks_ms() > WAIT_TIME + echo_start:
33 return -1
34 distance_cm = convert_to_centimeters(echo[0])
35 return distance_cm
36
37 # Main program
38
39 # Test code for the red LED
40 red_led.value = LED_ON
41 time.sleep(2)
42 red_led.value = LED_OFF
43 # Test code for the amber LED
44 amber_led.value = LED_ON

Set up amber_led as a digital output.

Use GPIO3

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 195 of 214

45 time.sleep(2)
46 amber_led.value = LED_OFF

47
48 while True:
49 distance_cm = object_distance()
50
51 if distance_cm < 0:
52 print("No object detected")
53 else:
54 print("Object detected:", distance_cm, "centimeters")
55
56 time.sleep_ms(WAIT_TIME)

Hint:

LED Test Connections
After setting up the second circuit with a resistor and amber LED, your breadboard may look like this:

Write test code to check that the amber LED is wired correctly.

The code is similar to the test code for the red LED.
You will delete this test code in the next Objective.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 196 of 214

Goals:

Set up the amber LED by assigning the variable amber_led as the output of exp.digital_out(exp.GPIO3).

Turn on the amber LED by assigning amber_led.value = LED_ON.

Turn off the amber LED by assigning amber_led.value = LED_OFF.

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8 LED_ON = True
 9 LED_OFF = False
10
11 # Set up peripherals
12 echo = pulseio.PulseIn(exp.GPIO0)
13 trigger = exp.digital_out(exp.GPIO1)
14 red_led = exp.digital_out(exp.GPIO2)

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 197 of 214

15 amber_led = exp.digital_out(exp.GPIO3)
16
17 # Convert echo time from microseconds to seconds
18 def convert_to_centimeters(echo_signal):
19 echo_time = echo_signal / 1000000
20 # Calculate using distance = rate * time
21 return (echo_time / 2) * SOUND_SPEED
22
23 # Use sonar to find the distance to an object
24 def object_distance():
25 # Turn on and off signal, clear the echo
26 trigger.value = True
27 trigger.value = False
28 echo.clear()
29 # Return time for echo or time out if no object detected
30 echo_start = time.ticks_ms()
31 while not echo:
32 if time.ticks_ms() > WAIT_TIME + echo_start:
33 return -1
34 distance_cm = convert_to_centimeters(echo[0])
35 return distance_cm
36
37 # Main program
38
39 # Test code for the red LED
40 red_led.value = LED_ON
41 time.sleep(2)
42 red_led.value = LED_OFF
43 # Test code for the amber LED
44 amber_led.value = LED_ON
45 time.sleep(2)
46 amber_led.value = LED_OFF
47
48 while True:
49 distance_cm = object_distance()
50
51 if distance_cm < 0:
52 print("No object detected")
53 else:
54 print("Object detected:", distance_cm, "centimeters")
55
56 time.sleep_ms(WAIT_TIME)

Objective 7 - Danger Ahead!

Use the two LEDs as warning signals for the Rover

The Rover's driver needs to be warned when a harmful object is near so that it can take the
appropriate action, like turning or stopping.

The amber LED can give a warning that the Rover is approaching an object.
The red LED can give an alert that the Rover is very close to an object!

You have already designed alert systems for the spacecraft. This shouldn't be much different.

Determine the distance to an object that triggers a warning.
Determine the distance to an object that triggers an alert.
Use an if and elif statement to turn on the amber or red LED.

Check the 'Trek!

Follow the CodeTrek to set up the distance detection warning system.

Define constants for the warning and alert distances.
Use an if and elif statement to turn ON the LEDs.

Test your code and check the warning system.

Run It!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 198 of 214

Open the console panel and run the code.

Start with an object far away from the sensor.
Move the object close enough to the Rover to trigger the warning.
Move the object closer to the Rover to trigger the alert.
Now move the object farther away.

What did you notice about the alarm system? Does it work the way you expect it to?

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8 LED_ON = True
 9 LED_OFF = False
10 WARNING_DISTANCE = 20.0 # Centimeters
11 ALERT_DISTANCE = 10.0 # Centimeters

12
13 # Set up peripherals
14 echo = pulseio.PulseIn(exp.GPIO0)
15 trigger = exp.digital_out(exp.GPIO1)
16 red_led = exp.digital_out(exp.GPIO2)
17 amber_led = exp.digital_out(exp.GPIO3)
18
19 # Convert echo time from microseconds to seconds
20 def convert_to_centimeters(echo_signal):
21 echo_time = echo_signal / 1000000
22 # Calculate using distance = rate * time
23 return (echo_time / 2) * SOUND_SPEED
24
25 # Use sonar to find the distance to an object
26 def object_distance():
27 # Turn on and off signal, clear the echo
28 trigger.value = True
29 trigger.value = False
30 echo.clear()
31 # Return time for echo or time out if no object detected
32 echo_start = time.ticks_ms()
33 while not echo:
34 if time.ticks_ms() > WAIT_TIME + echo_start:
35 return -1
36 distance_cm = convert_to_centimeters(echo[0])
37 return distance_cm
38
39 # Main program
40

41 while True:
42 distance_cm = object_distance()
43
44 if distance_cm < 0:
45 print("No object detected")

Define constants for WARNING_DISTANCE and ALERT_DISTANCE.

For testing purposes, the distances will be fairly small.
The suggested distances are 20.0 and 10.0 but you can use
different values if you want.
Using constants for the distances makes it easy to change the values when
deploying the system for the actual Rover.

Delete all the test code used to check the red and amber LEDs.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 199 of 214

46 else:
47 print("Object detected:", distance_cm, "centimeters")
48
49 if distance_cm < ALERT_DISTANCE:

50 red_led.value = LED_ON

51 elif distance_cm < WARNING_DISTANCE:
52 amber_led.value = LED_ON

53
54 time.sleep_ms(WAIT_TIME)

Hint:

Danger Distances
How can you determine the distances to use for the warning system?

The distances used for testing are somewhat arbitrary.

You are using the CodeX as the Rover, and the CodeX is small.

Distance to an object is measured in centimeters.

Select a warning distance that seems far enough to keep going, but close enough to be cautious.

Select an alert distance that seems almost too close for the Rover to stop safely.

Goals:

Define the constants WARNING_DISTANCE and ALERT_DISTANCE.

Add an if statement with the condition distance_cm < ALERT_DISTANCE.

Turn ON the red LED as an alert.

Add in elif statement that checks if distance_cm < WARNING_DISTANCE.

Turn ON the amber LED as a warning.

Tools Found: Constants, bool

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8 LED_ON = True

Add the new if statement inside the else section of the first if statement.

You only need to check the proximity of an object if an object is actually detected.
The order of the conditions matters!

Always start with the most restrictive condition.
In this case, it is the smallest distance, or the alert.

If the Rover is very close to an object, turn ON the red LED.

Add an elif to the statement that checks for the warning distance.

If the Rover is approaching an object, turn ON the amber LED.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 200 of 214

 9 LED_OFF = False
10 WARNING_DISTANCE = 20.0 # Centimeters
11 ALERT_DISTANCE = 10.0 # Centimeters
12
13 # Set up peripherals
14 echo = pulseio.PulseIn(exp.GPIO0)
15 trigger = exp.digital_out(exp.GPIO1)
16 red_led = exp.digital_out(exp.GPIO2)
17 amber_led = exp.digital_out(exp.GPIO3)
18
19 # Convert echo time from microseconds to seconds
20 def convert_to_centimeters(echo_signal):
21 echo_time = echo_signal / 1000000
22 # Calculate using distance = rate * time
23 return (echo_time / 2) * SOUND_SPEED
24
25 # Use sonar to find the distance to an object
26 def object_distance():
27 # Turn on and off signal, clear the echo
28 trigger.value = True
29 trigger.value = False
30 echo.clear()
31 # Return time for echo or time out if no object detected
32 echo_start = time.ticks_ms()
33 while not echo:
34 if time.ticks_ms() > WAIT_TIME + echo_start:
35 return -1
36 distance_cm = convert_to_centimeters(echo[0])
37 return distance_cm
38
39 # Main program
40
41 while True:
42 distance_cm = object_distance()
43
44 if distance_cm < 0:
45 print("No object detected")
46 else:
47 print("Object detected:", distance_cm, "centimeters")
48
49 if distance_cm < ALERT_DISTANCE:
50 red_led.value = LED_ON
51 elif distance_cm < WARNING_DISTANCE:
52 amber_led.value = LED_ON
53
54 time.sleep_ms(WAIT_TIME)

Quiz 2 - Check Your Understanding: LEDs and Resistors

Question 1: Why does an LED need a resistor?

done To limit the voltage.

close To increase the voltage.

close To connect it to the breadboard.

close To receive data from the sensor.

Question 2: Which LED lead is positive?

done The longer side

close The shorter side

close Either one; it doesn't matter

close The red one

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 201 of 214

Question 3: What does the LED negative lead connect to?

done GND

close 3.3V

close The resistor

close Input/Output

Question 4: When setting up the warning system, which condition comes first?

done Check for the alert distance.

close Check for the warning distance.

close Check if the Rover isn't close to the warning or alert distances.

close Any of the conditions can be first.

Objective 8 - Turn the Lights Off!

The warning system works ... the first time

The warning and alert LEDs light up, but when the Rover is no longer near an object, the LEDs
stay on. And, you don't want the warning LED and the alert LED to show at the same time.

Let's fix this problem.

When the amber LED is ON, the red LED should be OFF.
When the red LED is ON, the amber LED should be OFF.
Both LEDs should be OFF if the Rover is not close to any harmful object.

Check the 'Trek!

Follow the CodeTrek to add code to the if and elif statement.

Turn OFF the amber LED when the red LED is ON.
Turn OFF the red LED when the amber LED is ON.
Turn OFF both LEDs when neither condition is True.

Test your code and re-check the warning system.

Run It!

Open the console panel and run the code.

Start with an object far away from the sensor.
Move the object close enough to the Rover to trigger the warning.
Move the object closer to the Rover to trigger the alert.
Now move the object farther away.

Now does the warning system work the way you expect it to?

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 202 of 214

 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8 LED_ON = True
 9 LED_OFF = False
10 WARNING_DISTANCE = 20.0 # Centimeters
11 ALERT_DISTANCE = 10.0 # Centimeters
12
13 # Set up peripherals
14 echo = pulseio.PulseIn(exp.GPIO0)
15 trigger = exp.digital_out(exp.GPIO1)
16 red_led = exp.digital_out(exp.GPIO2)
17 amber_led = exp.digital_out(exp.GPIO3)
18
19 # Convert echo time from microseconds to seconds
20 def convert_to_centimeters(echo_signal):
21 echo_time = echo_signal / 1000000
22 # Calculate using distance = rate * time
23 return (echo_time / 2) * SOUND_SPEED
24
25 # Use sonar to find the distance to an object
26 def object_distance():
27 # Turn on and off signal, clear the echo
28 trigger.value = True
29 trigger.value = False
30 echo.clear()
31 # Return time for echo or time out if no object detected
32 echo_start = time.ticks_ms()
33 while not echo:
34 if time.ticks_ms() > WAIT_TIME + echo_start:
35 return -1
36 distance_cm = convert_to_centimeters(echo[0])
37 return distance_cm
38
39 # Main program
40 while True:
41 distance_cm = object_distance()
42
43 if distance_cm < 0:
44 print("No object detected")
45 else:
46 print("Object detected:", distance_cm, "centimeters")
47
48 if distance_cm < ALERT_DISTANCE:
49 red_led.value = LED_ON
50 amber_led.value = LED_OFF

51 elif distance_cm < WARNING_DISTANCE:
52 amber_led.value = LED_ON
53 red_led.value = LED_OFF

54 else:
55 red_led.value = LED_OFF
56 amber_led.value = LED_OFF

57
58 time.sleep_ms(WAIT_TIME)

Goals:

Use an if statement with the condition distance_cm < ALERT_DISTANCE.

When triggered, turn OFF the amber LED.

If distance_cm < ALERT_DISTANCE turn the amber LED OFF.

elif distance_cm < WARNING_DISTANCE turn the red LED OFF.

else if neither condition is True, turn OFF both LEDs.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 203 of 214

Use an elif statement with the condition distance_cm < WARNING_DISTANCE.

When triggered, turn OFF the red LED.

Use an else statement.

When triggered, turn OFF both LEDs.

Tools Found: bool

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4
 5 # Constants for peripherals
 6 SOUND_SPEED = 34300 # Rate: centimeters / second
 7 WAIT_TIME = 100 # Milliseconds
 8 LED_ON = True
 9 LED_OFF = False
10 WARNING_DISTANCE = 20.0 # Centimeters
11 ALERT_DISTANCE = 10.0 # Centimeters
12
13 # Set up peripherals
14 echo = pulseio.PulseIn(exp.GPIO0)
15 trigger = exp.digital_out(exp.GPIO1)
16 red_led = exp.digital_out(exp.GPIO2)
17 amber_led = exp.digital_out(exp.GPIO3)
18
19 # Convert echo time from microseconds to seconds
20 def convert_to_centimeters(echo_signal):
21 echo_time = echo_signal / 1000000
22 # Calculate using distance = rate * time
23 return (echo_time / 2) * SOUND_SPEED
24
25 # Use sonar to find the distance to an object
26 def object_distance():
27 # Turn on and off signal, clear the echo
28 trigger.value = True
29 trigger.value = False
30 echo.clear()
31 # Return time for echo or time out if no object detected
32 echo_start = time.ticks_ms()
33 while not echo:
34 if time.ticks_ms() > WAIT_TIME + echo_start:
35 return -1
36 distance_cm = convert_to_centimeters(echo[0])
37 return distance_cm
38
39 # Main program
40 while True:
41 distance_cm = object_distance()
42
43 if distance_cm < 0:
44 print("No object detected")
45 else:
46 print("Object detected:", distance_cm, "centimeters")
47
48 if distance_cm < ALERT_DISTANCE:
49 red_led.value = LED_ON
50 amber_led.value = LED_OFF
51 elif distance_cm < WARNING_DISTANCE:
52 amber_led.value = LED_ON
53 red_led.value = LED_OFF
54 else:
55 red_led.value = LED_OFF
56 amber_led.value = LED_OFF
57
58 time.sleep_ms(WAIT_TIME)

Objective 9 - Add Color and Sound

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 204 of 214

Use the CodeX for extra warning system features.

So far you have used the salvaged parts from the long-lost spacecraft for the distance
detection warning system. But some parts of the CodeX are still functional. You can add
some of the features of the CodeX into the warning system.

First Feature: Display Color

You discover the CodeX display screen can still display color. This is great news! Change the display screen:

RED when the alert is triggered,
YELLOW when the warning is triggered,
GREEN when nothing is triggered,
and show an image from the pics library when no obstacle is detected.

Type in the Code

Add code to each of the condition blocks to display something on the screen. Be careful with indenting!

if no obstacle is detected, select an image to display, like the happy face.

display.show(pics.HAPPY)

If the alert is triggered, change the display to RED.

display.fill(RED)

If the warning is triggered, change the display to YELLOW.

display.fill(YELLOW)

else change the display to GREEN.

display.fill(GREEN)

Test the warning system's added feature.

Run It!

Run the code. Check all the possibilities and make sure the correct image or color displays on the screen.

Second Feature: Add a warning sound

You also find out the speaker still works on the CodeX. Add to the visual warning system by adding an audio component as well.

Make a high-pitched siren beep when the alert is triggered.
Make a lower-pitched siren beep when the warning is triggered.
Don't make any sound when the Rover is not in danger.

Check the emoji_objects Hints to review the soundlib module.

There are several steps for creating a siren. So ... write a function!

Check the 'Trek!

Follow the CodeTrek to define a function for the siren and call the function when a warning or alert is triggered.

Test your code and check the new features to the warning system.

Run It!

Run the code. Check all the possibilities and make sure:

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 205 of 214

The correct image or color displays on the screen.
The siren plays when a warning or alert is triggered.

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio
 4 from soundlib import *
 5
 6 siren = soundmaker.get_tone("violin")

 7
 8 # Constants for peripherals
 9 SOUND_SPEED = 34300 # Rate: centimeters / second
10 WAIT_TIME = 100 # Milliseconds
11 LED_ON = True
12 LED_OFF = False
13 WARNING_DISTANCE = 20.0 # Centimeters
14 ALERT_DISTANCE = 10.0 # Centimeters
15
16 # Set up peripherals
17 echo = pulseio.PulseIn(exp.GPIO0)
18 trigger = exp.digital_out(exp.GPIO1)
19 red_led = exp.digital_out(exp.GPIO2)
20 amber_led = exp.digital_out(exp.GPIO3)
21
22 # Convert echo time from microseconds to seconds
23 def convert_to_centimeters(echo_signal):
24 echo_time = echo_signal / 1000000
25 # Calculate using distance = rate * time
26 return (echo_time / 2) * SOUND_SPEED
27
28 # Use sonar to find the distance to an object
29 def object_distance():
30 # Turn on and off signal, clear the echo
31 trigger.value = True
32 trigger.value = False
33 echo.clear()
34 # Return time for echo or time out if no object detected
35 echo_start = time.ticks_ms()
36 while not echo:
37 if time.ticks_ms() > WAIT_TIME + echo_start:
38 return -1
39 distance_cm = convert_to_centimeters(echo[0])
40 return distance_cm
41
42 # Sound a siren when the Rover is in danger
43 def sound_siren(tone):

44 siren.set_pitch(tone)
45 siren.play()
46 siren.glide(tone+440, 2.0)
47 time.sleep_ms(WAIT_TIME)
48 siren.stop()

Define a variable for siren.

Remember to import the soundlib module.

Define a function for sounding the siren.

Use one parameter for the tone.
The parameter allows you to use a single function for two different sirens.

Add code to sound the siren.

The starting tone is the value of the parameter.
The glide gives a nice siren sound.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 206 of 214

49
50 # Main program
51 while True:
52 distance_cm = object_distance()
53
54 if distance_cm < 0:
55 print("No object detected")
56 display.show(pics.HAPPY)

57 else:
58 print("Object detected:", distance_cm, "centimeters")
59
60 if distance_cm < ALERT_DISTANCE:
61 red_led.value = LED_ON
62 amber_led.value = LED_OFF
63 display.fill(RED)
64 sound_siren(770)
65 elif distance_cm < WARNING_DISTANCE:
66 amber_led.value = LED_ON
67 red_led.value = LED_OFF
68 display.fill(YELLOW)
69 sound_siren(440)

70 else:
71 red_led.value = LED_OFF
72 amber_led.value = LED_OFF
73 display.fill(GREEN)

74
75 time.sleep_ms(WAIT_TIME)

Hints:

The Soundlib Module
The soundlib module (or library) provides a high-level interface for playing and mixing sounds of different types on the CodeX.

A first step for using methods in the soundlib module is to define a variable for an instrument. You can choose from:

flute

recorder

trumpet

violin

noise

organ

synth

As long as the condition in the main program is True, the function will be called continously, which will make the siren "beep".

Add code to display the happy face when no obstacle is detected.

You can use a different image, or even a fill color.
The code is from the first feature.

Call the function if the alert or warning is triggered.

You will have two function calls.
Use a different tone for each function call.

Add code to each of the if statement branches to display
a fill color on the screen.

You will have three of these statements, one for each condition block.
The code is from the first feature.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 207 of 214

Experiment with the different instruments and pick one you like the best.

Gliding
A feature of the soundlib module is glide.

This method takes two parameters: the ending pitch and the duration.

The sound will glide from the current frequency to the new pitch.

The timing of the glide is the duration in seconds.

Make It Your Own
The added features offer a lot of flexibility. You can make some decisions so that the warning system is uniquely yours.

You can:

select the colors and/or images to display on the screen.

pick an instrument for the siren.

choose the starting pitch (tone) for each warning beep.

choose the ending pitch for the glide.

determine the duration of the glide. This can even be a parameter and can be different for each function call.

choose to call the siren even if no obstacle is detected.

select the warning and alert distance, and also the wait time.

Goals:

Use an if statement with the condition distance_cm < ALERT_DISTANCE.

When triggered:

Call display.fill(RED).

Call sound_siren(770).

Use an elif statement with the condition distance_cm < WARNING_DISTANCE.

When triggered:

Call display.fill(YELLOW).

Call sound_siren(440).

Define a function sound_siren() that has one parameter tone.

Tools Found: Display, CodeX Image Pics, Audio, soundlib, Functions, bool

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4 from soundlib import *
 5
 6 siren = soundmaker.get_tone("violin")
 7
 8 # Constants for peripherals
 9 SOUND_SPEED = 34300 # Rate: centimeters / second
10 WAIT_TIME = 100 # Milliseconds
11 LED_ON = True
12 LED_OFF = False
13 WARNING_DISTANCE = 20.0 # Centimeters
14 ALERT_DISTANCE = 10.0 # Centimeters
15

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 208 of 214

16 # Set up peripherals
17 echo = pulseio.PulseIn(exp.GPIO0)
18 trigger = exp.digital_out(exp.GPIO1)
19 red_led = exp.digital_out(exp.GPIO2)
20 amber_led = exp.digital_out(exp.GPIO3)
21
22 # Convert echo time from microseconds to seconds
23 def convert_to_centimeters(echo_signal):
24 echo_time = echo_signal / 1000000
25 # Calculate using distance = rate * time
26 return (echo_time / 2) * SOUND_SPEED
27
28 # Use sonar to find the distance to an object
29 def object_distance():
30 # Turn on and off signal, clear the echo
31 trigger.value = True
32 trigger.value = False
33 echo.clear()
34 # Return time for echo or time out if no object detected
35 echo_start = time.ticks_ms()
36 while not echo:
37 if time.ticks_ms() > WAIT_TIME + echo_start:
38 return -1
39 distance_cm = convert_to_centimeters(echo[0])
40 return distance_cm
41
42 # Sound a siren when the Rover is in danger
43 def sound_siren(tone):
44 siren.set_pitch(tone)
45 siren.play()
46 siren.glide(tone+440, 2.0)
47 time.sleep_ms(WAIT_TIME)
48 siren.stop()
49
50 # Main program
51 while True:
52 distance_cm = object_distance()
53
54 if distance_cm < 0:
55 print("No object detected")
56 display.show(pics.HAPPY)
57 else:
58 print("Object detected:", distance_cm, "centimeters")
59
60 if distance_cm < ALERT_DISTANCE:
61 red_led.value = LED_ON
62 amber_led.value = LED_OFF
63 display.fill(RED)
64 sound_siren(770)
65 elif distance_cm < WARNING_DISTANCE:
66 amber_led.value = LED_ON
67 red_led.value = LED_OFF
68 display.fill(YELLOW)
69 sound_siren(440)
70 else:
71 red_led.value = LED_OFF
72 amber_led.value = LED_OFF
73 display.fill(GREEN)
74
75 time.sleep_ms(WAIT_TIME)

Objective 10 - Power Down!

And one more thing ...

Did you notice that if an LED is ON when the program ends, it STAYS on? This can be a
little annoying. Plus, you just might want the ability to power down the Rover at any given
time.

The CodeX can really help out with this feature. Use a CodeX Button to "power down"
the Rover.

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 209 of 214

Check the 'Trek!

Follow the CodeTrek to define a power_down function and call it when a button is
pressed.

Test your code and power down the Rover on demand.

Run It!

Run the code.

Check all the features of the warning system.
Power down the Rover by pressing the button.

CodeTrek:

 1 from codex import *
 2 import time
 3 import pulseio
 4 from soundlib import *
 5
 6 siren = soundmaker.get_tone("violin")
 7
 8 # Constants for peripherals
 9 SOUND_SPEED = 34300 # Rate: centimeters / second
10 WAIT_TIME = 100 # Milliseconds
11 LED_ON = True
12 LED_OFF = False
13 WARNING_DISTANCE = 20.0 # Centimeters
14 ALERT_DISTANCE = 10.0 # Centimeters
15
16 # Set up peripherals
17 echo = pulseio.PulseIn(exp.GPIO0)
18 trigger = exp.digital_out(exp.GPIO1)
19 red_led = exp.digital_out(exp.GPIO2)
20 amber_led = exp.digital_out(exp.GPIO3)
21
22 # Convert echo time from microseconds to seconds
23 def convert_to_centimeters(echo_signal):
24 echo_time = echo_signal / 1000000
25 # Calculate using distance = rate * time
26 return (echo_time / 2) * SOUND_SPEED
27
28 # Use sonar to find the distance to an object
29 def object_distance():
30 # Turn on and off signal, clear the echo
31 trigger.value = True
32 trigger.value = False
33 echo.clear()
34 # Return time for echo or time out if no object detected
35 echo_start = time.ticks_ms()
36 while not echo:
37 if time.ticks_ms() > WAIT_TIME + echo_start:
38 return -1
39 distance_cm = convert_to_centimeters(echo[0])
40 return distance_cm
41
42 # Sound a siren when the Rover is in danger
43 def sound_siren(tone):
44 siren.set_pitch(tone)
45 siren.play()
46 siren.glide(tone+440, 2.0)
47 time.sleep_ms(WAIT_TIME)
48 siren.stop()
49
50 # Turn off the warning system and stop the Rover
51 def power_down():

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 210 of 214

52 red_led.value = LED_OFF
53 amber_led.value = LED_OFF

54 print("Rover stopped")
55 display.show(pics.HOUSE)

56 time.sleep(5)

57
58 # Main program
59 while True:
60 distance_cm = object_distance()
61
62 if distance_cm < 0:
63 print("No object detected")
64 display.show(pics.HAPPY)
65 else:
66 print("Object detected:", distance_cm, "centimeters")
67
68 if distance_cm < ALERT_DISTANCE:
69 red_led.value = LED_ON
70 amber_led.value = LED_OFF
71 display.fill(RED)
72 sound_siren(770)
73 elif distance_cm < WARNING_DISTANCE:
74 amber_led.value = LED_ON
75 red_led.value = LED_OFF
76 display.fill(YELLOW)
77 sound_siren(440)
78 else:
79 red_led.value = LED_OFF
80 amber_led.value = LED_OFF
81 display.fill(GREEN)
82
83 time.sleep_ms(WAIT_TIME)
84
85 if buttons.was_pressed(BTN_A):
86 break

87
88 # End program
89 power_down()

Define the function power_down() to shut off the warning system.

Turn OFF both LEDs, in case they are ON when you want
to power down the system.

Indicate on the console panel and the display screen
that the Rover has stopped.

You can select any image from the pics library to display.

Set a delay for the print() and display.show() statements.

After the delay they will automatically turn off.

In the while True: loop, use a button press to break
from the loop.

Be careful with indenting!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 211 of 214

Hints:

The Power of a Function
Since you are only calling the power_down() function once, you may wonder why you need to define a function at all. You could
easily just put all the code at the end.

This is true, but defining a function gives you a lot of flexibility. Let's say you add a servo for wheels on the Rover. When you
power down you also want to turn off the wheels. A function keeps code all in one place and makes it easy to modify.

Inputs
You are using a CodeX button to break the loop and subsequently power down the Rover. What if the CodeX buttons are
non-functioning? You could also use a peripheral from the Kit, such as:

the button

the switch

the microswitch

You could also use a sensor. If a particular reading is given, you may want to call the power_down() function.

temperature sensor, if the Rover gets too hot or cold

light sensor, if it is too dark for the Rover to see

sound sensor, if there is an explosion on the Rover

and many more possibilities!

Goals:

Define the function power_down().

Use an if statement with the condition buttons.was_pressed(BTN_A).

When triggered, call break.

Call power_down().

Tools Found: CodeX Buttons, Functions, bool, CodeX Image Pics, Timing

Solution:

 1 from codex import *
 2 import time
 3 import pulseio
 4 from soundlib import *
 5
 6 siren = soundmaker.get_tone("violin")
 7
 8 # Constants for peripherals
 9 SOUND_SPEED = 34300 # Rate: centimeters / second
10 WAIT_TIME = 100 # Milliseconds
11 LED_ON = True
12 LED_OFF = False
13 WARNING_DISTANCE = 20.0 # Centimeters
14 ALERT_DISTANCE = 10.0 # Centimeters
15
16 # Set up peripherals
17 echo = pulseio.PulseIn(exp.GPIO0)
18 trigger = exp.digital_out(exp.GPIO1)

After the while True: loop, end the program by calling power_down().

The function call is after the loop.
Be very careful with indenting!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 212 of 214

19 red_led = exp.digital_out(exp.GPIO2)
20 amber_led = exp.digital_out(exp.GPIO3)
21
22 # Convert echo time from microseconds to seconds
23 def convert_to_centimeters(echo_signal):
24 echo_time = echo_signal / 1000000
25 # Calculate using distance = rate * time
26 return (echo_time / 2) * SOUND_SPEED
27
28 # Use sonar to find the distance to an object
29 def object_distance():
30 # Turn on and off signal, clear the echo
31 trigger.value = True
32 trigger.value = False
33 echo.clear()
34 # Return time for echo or time out if no object detected
35 echo_start = time.ticks_ms()
36 while not echo:
37 if time.ticks_ms() > WAIT_TIME + echo_start:
38 return -1
39 distance_cm = convert_to_centimeters(echo[0])
40 return distance_cm
41
42 # Sound a siren when the Rover is in danger
43 def sound_siren(tone):
44 siren.set_pitch(tone)
45 siren.play()
46 siren.glide(tone+440, 2.0)
47 time.sleep_ms(WAIT_TIME)
48 siren.stop()
49
50 # Turn off the warning system and stop the Rover
51 def power_down():
52 red_led.value = LED_OFF
53 amber_led.value = LED_OFF
54 print("Rover stopped")
55 display.show(pics.HOUSE)
56 time.sleep(5)
57
58 # Main program
59 while True:
60 distance_cm = object_distance()
61
62 if distance_cm < 0:
63 print("No object detected")
64 display.show(pics.HAPPY)
65 else:
66 print("Object detected:", distance_cm, "centimeters")
67
68 if distance_cm < ALERT_DISTANCE:
69 red_led.value = LED_ON
70 amber_led.value = LED_OFF
71 display.fill(RED)
72 sound_siren(770)
73 elif distance_cm < WARNING_DISTANCE:
74 amber_led.value = LED_ON
75 red_led.value = LED_OFF
76 display.fill(YELLOW)
77 sound_siren(440)
78 else:
79 red_led.value = LED_OFF
80 amber_led.value = LED_OFF
81 display.fill(GREEN)
82
83 time.sleep_ms(WAIT_TIME)
84
85 if buttons.was_pressed(BTN_A):
86 break
87
88 # End program
89 power_down()

Mission 10 Complete

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 213 of 214

You've completed Project Exploring the Surface!

The Rover is now less likely to crash. And the crew can focus on their mission instead of fixing the equipment.

And your mission here is now complete!

Your next mission, should you choose to accept it, is to use your programming skills and the peripherals kit to complete your own
projects.

Have fun, and happy coding!

Lift-Off with CodeX Mission Content

©2024 Firia Labs Appendix A 214 of 214

